

A-Level Chemistry

Electron Configuration

Mark Scheme

Time available: 58 minutes Marks available: 52 marks

www.accesstuition.com

Mark schemes

1.	(a)	Aluminium / Al Allow M2/M3 if a Group 3 element is given
		1 (Outer) electron in (3) <u>p</u> orbital / sub-shell (level) <i>Not energy level</i>
		1 (3p) higher in energy / slightly more shielded (than 3s) / slightly further
		away (than 3s) 1
		or OR
		Sulfur / S Allow M2/M3 if a Group 6 element is given 1
		(Outer) electrons in (3)p orbital begin to <u>pair</u> Do not allow just p^4 vs p^3
		1 Repel
	(b)	$Na^{2+}(g) \rightarrow Na^{3+}(g) + e^{-}$ State symbols essential. Allow $Na^{2+}(g) + e^{-} \rightarrow Na^{3+}(g) + 2 e^{-}$ 1
	(c)	M1 Phosphorus / P Mark independently
		M2 large jump in ionisation energy for the 6^{th} ionisation energy Large jump after the 5 e ⁻ is removed / when the 6^{th} e ⁻ is removed
		M3 This is when the electron is being removed from the 2 nd (principle) energy level / from a lower energy level / from a lower shell / from 2p / from an energy level that is closer to the nucleus
2.	(a)	3 Cross at 1580 Allow a cross drawn for Si that is between the values for Mg and Al
	(b)	M1 Na 1

www.accesstuition.com

[7]

	M2 Na ⁺ (g) \rightarrow Na ²⁺ (g) + e ⁻		
	M2 Allow $Q^+(g) \rightarrow Q^{2+}(g) + e^-$		
	State symbols essential		
	Allow correct equation consequential on their element		
		1	
(\mathbf{a})	The number of protono increases OD nuclear charge increases		
(c)	The number of protons increases OR nuclear charge increases	1	
		1	
	Shielding is similar/same OR electrons are added to the same shell		
	Allow same number of shells		
		1	
(d)	Chlorine/Cl		
()		1	
(e)	$4P + 5O_2 \rightarrow P_4O_{10} \text{ OR } P_4 + 5O_2 \rightarrow P_4O_{10}$		
()	Allow multiples		
	Ignore state symbols		
	Do not allow equations with P_2O_5		
		1	
			[7]
(a)	[Kr] 5s ² 4d ¹⁰ 5p ⁵	1	
		1	
(b)	This question is marked using levels of response. Refer to the Mark Scheme Instructions		

(b) This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.

Level 3

3.

All stages are covered and the explanation of each stage is correct and complete.

Answer communicates the whole explanation coherently and shows a logical progression from stage 1 to stage 2 and then stage 3.

5-6 marks

Level 2

All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies **OR** two stages are covered and the explanations are generally correct and virtually complete.

Answer is mainly coherent and shows a progression through the stages. Some steps in each stage may be out of order and incomplete.

3-4 marks

Level 1

Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, **OR** only one stage is covered but the explanation is generally correct and virtually complete.

Answer includes some isolated statements, but these are not presented in a logical order or show confused reasoning.

1-2 marks

0 marks

Level 0

Insufficient correct chemistry to warrant a mark.

Indicative Chemistry content

Stage 1

 I_2 is molecular.

HI is molecular.

Stage 2

IMF hold the molecules together.

There are weak IMF forces hence the melting point is low in both substances.

 I_2 bigger molecule than HI so I_2 has more electrons.

Stage 3

Therefore stronger van der Waals between molecules in I_2 that need more energy to break causing the melting point to be higher. HI also shows permanent dipole-dipole attraction between molecules but these forces are less than the vdW forces in iodine.

(c) No delocalised electrons or ions

(d)
$$\frac{1}{2}H_2 + \frac{1}{2}I_2 \longrightarrow HI$$

Allow multiples

(e) NH₄I₃

1

1

6

1

Allow any shape with 3 bond pairs and 2 lone pairs

1

4.

Allow any shape with 4 bond pairs and 2 lone pairs (e.g. lone pairs in equatorial positions)

	(g)	+5	1	
		+7	1	
]	(a)	Y		[14]
	(b)	x	1	
	(c)	Jump in trend of ionisation energies after removal of fifth electron	1	
		Fits with an element with 5 outer electrons (4s ² 3d ³) like V	1	
	(d)	Explanation: Two different colours of solution are observed	1	
		Because each colour is due to vanadium in a different oxidation state	1	

(e) Stage 1: mole calculations in either order

Moles of vanadium = $50.0 \times 0.800 / 1000 = 4.00 \times 10^{-2}$

Extended response Maximum of 5 marks for answers which do not show a sustained line of reasoning which is coherent, relevant, substantiated and logically structured.

Moles of SO₂ = pV / RT = (98 000 × 506 × 10⁻⁶) / (8.31 × 293)

 $= 2.04 \times 10^{-2}$

Stage 2: moles of electrons added to NH₄VO₃

When SO_2 (sulfur(IV) oxide) acts as a reducing agent, it is oxidised to sulfate(VI) ions so this is a two electron change

Moles of electrons released when SO₂ is oxidised = $2.04 \times 10^{-2} \times 2$

 $= 4.08 \times 10^{-2}$

Stage 3: conclusion

But in NH₄VO₃ vanadium is in oxidation state 5

 4.00×10^{-2} mol vanadium has gained 4.08×10^{-2} mol of electrons therefore 1 mol vanadium has gained $4.08 \times 10^{-2} / 4.00 \times 10 - 2 = 1$ mol of electrons to the nearest integer, so new oxidation state is 5 - 1 = 4

 5.
 (a)
 General increase

 If not increase then CE
 1

 Greater nuclear charge / more protons
 1

 Same shielding / electrons added to same shell
 1

 Allow similar
 1

 Stronger attraction (from nucleus) for outer electron(s)
 1

Allow electron in outer shell

1

1

1

1

1

1

1

[11]

(b)	Aluminium / Al (lower than Mg) CE if not Al or S	
	(Outer) electron in (3) <u>p</u> orbital / sub-shell (level) If 2p or 4p orbital lose M2 and M3	1
	(3p) higher in energy Allow more shielded or weaker nuclear attraction M3 is dependent on M2	1
	or Sulfur / S (lower than P) (Outer) electrons in (3) <u>p</u> orbital begin to pair Repel	1
	If 2p or 4p orbital lose M2 and M3 Allow 2 electrons in (3) <u>p</u> M3 is dependent on M2	
(c)	Sulfur / S CE if not S	
	Large jump after 6 th or between 6 th and 7 th Do not allow M2 if atom/ion is removed	1
(d)	Silicon CE if not Si	
	Giant covalent structure / macromolecule Covalent (bonds) <i>Giant covalent scores M2 and M3</i>	1 1
	Many / strong (covalent bonds) or (covalent bonds) need lots of energy to break CE for M2-M4 if molecules / metallic / ionic / IMFs mentioned	1
		1 [13]