

A-Level Chemistry

Electron Configuration

Question Paper

Time available: 58 minutes Marks available: 52 marks

www.accesstuition.com

- 1. This question is about atomic structure.
 - (a) There is a general trend for an increase in ionisation energy across Period 3. Give **one** example of an element that deviates from this trend.

Explain why this deviation occurs.

Explanation _____

(b) Give an equation, including state symbols, to represent the process that occurs when the **third** ionisation energy of sodium is measured.

(c) The graph shows the successive ionisation energies of a Period 3 element, X.

(3)

(1)

Identify element **X**. Explain your choice.

Element			
Explanation			

(3) (Total 7 marks)

2. This question is about Period 3 elements.

The graph shows the **second** ionisation energies of some elements in Period 3.

(a) Draw a cross (x) on the graph above to show the **second** ionisation energy of silicon.

(1)

(D)	ionisation energy.	
	Give an equation, including state symbols, to show the process that occurs when the second ionisation energy of this element is measured.	
	If you were unable to identify the element you may use the symbol Q in your equation.	
	Element	
	Equation	
(c)	Explain why the atomic radius decreases across Period 3, from sodium to chlorine.	(2)
(0)		
(d)	Identify the element in Period 3, from sodium to chlorine, that has the highest electronegativity.	(2)
		(1)
(e)	Phosphorus burns in air to form phosphorus(V) oxide. Give an equation for this reaction.	
	(Total	(1) 7 marks)
This	s question is about the element iodine and its compounds.	
(a)	Iodine is in Group 7 of the Periodic Table.	
	Complete the electron configuration of an iodine atom.	
	[Kr]	
		(1)

3.

	of the structure of an iodine crystal is shown in the diagram.
	こくとくとく
	ミクミクミク
	NZNZNZ
	こくこくこく
	your knowledge of structure and bonding to explain why the melting point of iodine is (113.5 °C) and why that of hydrogen iodide is very low (–50.8 °C).
State	e why iodine does not conduct electricity.
Ded	uce an equation for the formation of hydrogen iodide from its elements.
	triiodide ion is formed when an iodine molecule is bonded to an iodide ion.
	t is the formula of ammonium triiodide?
Tick	(✓) one box.
NILI	
NH ₃	¹ 3
NH ₃	
1.41.13	
	şl ₄
NH ₄	

(1)

(f)	Draw the shape of the ${\rm IF_3}$ molecule and the shape of the ${\rm IF_4}^-$ ion. Include any lone pairs of electrons that influence each shape.							
								(2)
(g)	Ded	uce the oxidation	on state of iodin	e in the follow	ing species.			()
	Ba(IC	O ₃) ₂						
	[H ₄ IC	₆] ⁻						
							(Total 14 m	(2) arks)
		elow shows so , Y and Z .	me successive	ionisation ene	ergy data for ato	oms of three di	fferent	
Elem	nents X	X, Y and Z are 0	Ca, Sc and V bi	ut not in that o	rder.			
		First	Second	Third	Fourth	Fifth	Sixth	
X		648	1370	2870	4600	6280	12 400	
Y		590	1150	4940	6480	8120	10 496	
Z		632	1240	2390	7110	8870	10 720	
(a)	Whic	h element is ca	lcium?					
	X	0						
	Υ	0						
	Z	0						
								(1)
(b)	Whic	h element is va	ınadium?					
	X	0						
	Υ	0						
	Z	0						(1)

4.

An acid	ified solution of NH ₄ VO ₃ reacts with zinc.
-	how observations from this reaction show that vanadium exists in at least two toxidation states.

	(e)	The vanadium in 50.0 cm^3 of a $0.800 \text{ mol dm}^{-3}$ solution of NH_4VO_3 reacts with $50 \text{ sulfur}(IV)$ oxide gas measured at 20.0 °C and 98.0 kPa .	06 cm ³ of
		Use this information to calculate the oxidation state of the vanadium in the solution reduction reaction with sulfur(IV) oxide. Explain your working.	n after the
		The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$.	
		Oxidation state =	
			(6) (Total 11 marks)
5.	This	question is about the periodicity of the Period 3 elements.	
	(a)	State and explain the general trend in first ionisation energy across Period 3.	

Explain why this	deviation of	occurs.						
								(3)
c) The table shows	successive	ionisation	n energies	of an elen	nent Y in F	Period 3.		
onisation number	1	2	3	4	5	6	7	8
lonisation energy / kJ mol ^{–1}	1000	2260	3390	4540	6990	8490	27 100	31 700
Identify element	Υ.							
	wer using	data from	the table.					
Explain your ans								
Explain your ans								
Explain your ans								
Explain your ans								
Explain your ans								
Explain your ans								

(d)	Identify the Period 3 element that has the highest melting point.	
	Explain your answer by reference to structure and bonding.	
		
		(4)
	(Total 13 mark	ks)