

A-Level Chemistry
 Elimination of Alcohols

Mark Scheme

Time available: 54 minutes Marks available: 50 marks

Mark schemes

1. (a) nucleophilic substitution
(b) M1 elimination

M2 arrow from lone pair on O to H^{+}

M3 $1^{\text {st }}$ intermediate and arrow from $\mathrm{C}-\mathrm{O}^{+} \mathrm{H}_{2}$ bond to O

M4 2nd intermediate (carbocation) and arrow from a correct $\mathrm{C}-\mathrm{H}$ bond to correct $\mathrm{C}-\mathrm{C}$ to form $\mathrm{C}=\mathrm{C}$

Max 2 of 3 marks (M2-4) for wrong organic reactant (ignore structure of product)
M3 and M4 can be scored in one concurrent step:
M3 for correct intermediate and arrow from $\mathrm{C}-\mathrm{O}^{+} \mathrm{H}_{2}$ bond to O
M4 for arrow from a correct $C-H$ bond to correct $C-C$ to form $C=C 1$

$\left(-\mathrm{H}_{2} \mathrm{O}\right)$

- $\left(-\mathrm{H}^{+}\right)$

(c)

Any correct structural representation
Ignore any brackets and/or n
(d)

2. (a) M1 idea that pentan-2-ol has stronger intermolecular forces M1 idea that hydrogen bonds are stronger than van der Waals' forces
Penalise M1 for any reference to idea of breaking covalent bonds

M2 pent-1-ene has van der Waals' forces (only)
M2 allow London forces or temporary/induced dipole forces or vdW forces for van der Waals' forces

M3 pentan-2-ol (also) has hydrogen bonds
M3 Ignore reference to dipole-dipole forces in pentan-2-ol
(b) M1 reagent $=\underline{\text { conc sulfuric acid or conc phosphoric acid }}$ M1 penalise incorrect name or formula (even if both name and formula are given)

M2 allow high temperature
M2 reagent must indicate an acid in some way in order for M2 to be awarded
M1/2 allow 1 mark if $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{3} \mathrm{PO}_{4}$ given as reagent and conc(entrated) given as condition

M3 curly arrow from lone pair on alcohol O to H^{+}
M3-5
penalise M3/4/5 for any additional arrow(s) in addition to the correct one at each stage
If incorrect reactant (or product if shown), maximum 2 marks of M3-5
Alternatives for M3

M4 curly arrow from C -O bond to O on correct intermediate

M5 arrow from C-H bond on C1 to C-C bond between C1 and C2 on correct carbocation allow M4 and M5 concurrent:

3.

M1 curly arrow from lone pair on O to H^{+}

M3 curly arrow from C-O bond to O

M4 curly arrow from correct C-H bond towards correct C-C bond
Ignore other species that are drawn, but penalise any curly arrows to/from other species for M1/3/4 as relevant (but allow attack by an anion of phosphoric acid on the H that is lost in M4 in addition to the arrow specified)
for M2, the O of the ${ }^{+} \mathrm{OH}_{2}$ group must be bonded to the ring
(b)

Any correct structural representation
(c) M1 more stable (carbocation formed)

For M1 penalise more stable product

M2 changes from secondary to tertiary (carbocation)
For M2 allow explanation via inductive effect with more alkyl / C groups attached or inductive effect from methyl group as alternatives
Allow 2° or 2^{y} for secondary and 3° or 3^{y} for tertiary
(d)

Any correct structural representation
(e) M1 cyclohexene : van der Waals' forces (between molecules)

M2 cyclohexanol : hydrogen bonds (between molecules)
M3 phosphoric acid: hydrogen bonds (between molecules)
M4 idea that cyclohexene has weakest forces
M5 separated by (simple / fractional) distillation
M6 cyclohexene has lowest boiling point / boils off first
Extended response
Maximum of 5 marks for answers which do not refer to the van der
Waals forces or hydrogen bonds being between molecules in some way
M1 penalise reference to presence of other intermolecular forces
M1 allow vdW forces (on this occasion)
M1/2/3 penalise reference to breaking covalent bonds
M2 \& M3 ignore reference to van der Waals and/or (permanent) dipole-dipole forces
M2 allow use of term H bonds (on this occasion)
M4 allow converse argument
M4 \& M6 - allow correct comparison of cyclohexene forces and boiling point to one of the other two compounds if only one of cyclohexanol or phosphoric acid discussed
4. (a) 3-methylbutan-2-ol
(b)

Allow $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOCH}_{3}$
(c) Elimination
(d)

Allow $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{3}$

Allow $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}=\mathrm{CH}_{2}$
(e) Position
(f) CBA
(g)

Allow $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$
(h)

Allow $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{OH}$
5. (a) (i) 2-methylpropan-2-ol (1) OR the second one
ignore additional (aq)
(1)
(ii) Dehydrating agent: conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ OR conc $\mathrm{H}_{3} \mathrm{PO}_{4}$ OR $\mathrm{Al}_{2} \mathrm{O}_{3}$

Equation:

Allow $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ in equation provided RHS is correct
if b(i) is blank, b(ii) equation must be full for credit i.e. $\mathrm{NOT} \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$

Mark consequential on b(i)
(b) (i) Isomer: butan-2-ol OR the fourth one
[look at name in table]
wrong isomer $=\mathrm{CE}$
Structure of the ketone:

(ii) Isomer: butan-1-ol OR the first one

OR 2-methylpropan-1-ol OR the third one
[look at name in table]
Wrong isomer = CE
Structure of the aldehyde:

Either

(iii)

Reagent	M1	Tollen's $\left(\mathrm{AgNO}_{3} / \mathrm{NH}_{3}\right)$	Fehling's
Observation with ketone	M2	Stays colourless no change	stays blue no change
Observation with aldehyde	M3	Silver mirror black ppt	red solid orange/red brown/ red
ppt/solid			

Other include(*)
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{KMnO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}$
Schiff's
Benedict's
Wrong reagent R
No reagent $=\mathrm{CE}$
Penalise $\mathrm{AgNO}_{3}\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]$ but allow M 2 and M 3 sequentially.

$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4}$ acidified	ketone orange no change	aldehyde $\mathrm{KMnO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}$ acidified
purple no change	colourless (v. Pale pink)	
Benedict's \equiv Fehling's $\quad ; \quad$Schiff's colouless violet	\rightarrow pink with CHO	

(c) Equation: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\left(\right.$ or $\left.\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}\right)+2[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ (or $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}$) $+\mathrm{H}_{2} \mathrm{O}$ (1)

Name of product. butanoic acid (1)
Accept butaneoic acid
$\left(\right.$ or $\left.\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}\right)+\mathrm{H}_{2} \mathrm{O}(1)$

