

A-Level Chemistry

Elimination of Alcohols

Question Paper

Time available: 54 minutes Marks available: 50 marks

www.accesstuition.com

4	
- 1	_
•	•

Prop-2-en-1-ol is a natural chemical found in garlic. It is also used in the production of plasticisers.

(a) Prop-2-en-1-ol can be prepared by reacting 3-chloroprop-1-ene with dilute aqueous sodium hydroxide.

Name the mechanism for this reaction.

(1)

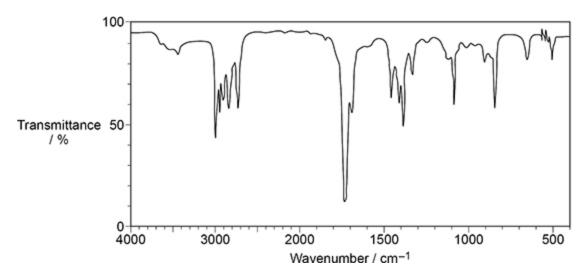
(b) Prop-2-en-1-ol can also be formed from HOCH₂CH₂CH₂OH in the presence of an acid catalyst.

$$HOCH_2CH_2CH_2OH \longrightarrow CH_2=CHCH_2OH + H_2O$$

Name and outline a mechanism for this reaction.

Name of mechanism _____

Outline of mechanism


(4)

(c) Prop-2-en-1-ol forms an addition polymer.

Draw the repeating unit of poly(prop-2-en-1-ol).

(1)

(d) The figure below shows the infrared spectrum of a functional group isomer of prop-2-en-1-ol.

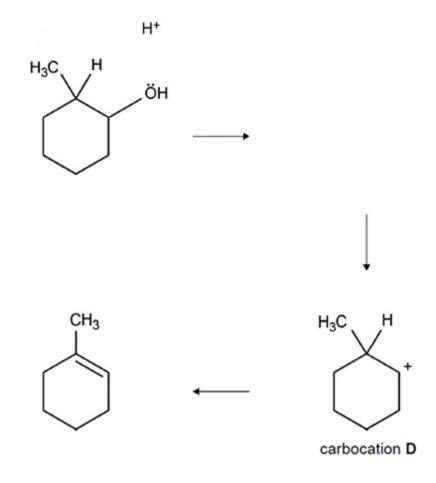
This isomer reacts with acidified potassium dichromate(VI) to form a green solution.

Draw the structure of this isomer.

(1)

(Total 7 marks)

Empleio valor pontos O al bas a bieb en ballie e estat (bas e act 4 ace	
Explain why pentan-2-ol has a higher boiling point than pent-1-ene.	
Pent-1-ene is formed by the elimination of water from pentan-2-ol.	
State the reagent and condition for this reaction.	
Outline the mechanism for this reaction.	
Reagent	
Condition	
Outline of mechanism	

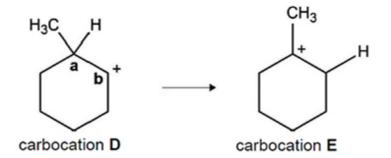

2.

www.accesstuition.com

(5)

(Total 8 marks)

- **3.** Alcohols undergo dehydration in the presence of concentrated phosphoric acid, via a carbocation intermediate, to form alkenes.
 - (a) Complete the mechanism for the conversion of 2-methylcyclohexanol into 1-methylcyclohexene via carbocation **D** by drawing
 - the structure of the missing intermediate
 - all necessary curly arrows.



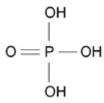
(b) Draw the structure of a different cyclic alkene formed from carbocation **D**.

(1)

(4)

(c) Carbocation D can undergo a type of reaction called a rearrangement to form carbocation
 E. In this reaction, a hydrogen atom and its bonding pair of electrons move from carbon a to carbon b as shown in the diagram below.

Jse your knowledge of carbocations to explain why this rearrangement takes place.			akes place.	


(d) As a result of the rearrangement in part (c), a third alkene is formed in this reaction.

Draw the structure of this third alkene.

(1)

(2)

(e) Cyclohexene is prepared by the dehydration of cyclohexanol using concentrated phosphoric acid as a catalyst. The structure of concentrated phosphoric acid is shown.

Identify the factors that influence the boiling points of each of the compounds in the reaction mixture. State how and explain why cyclohexene can be separated from reaction mixture.	
Todolon mixtaro.	
	(6)
	(Total 14 marks)

4. Alcohol **A** (CH₃)₂CHCH(OH)CH₃ undergoes reactions separately with acidified potassium dichromate(VI) and with concentrated sulfuric acid.

(a) Deduce the IUPAC name for alcohol **A**.

(b) Draw the structure of the organic product, **B**, formed when **A** is oxidised in the reaction with acidified potassium dichromate(VI).

(1)

concentrated sulfuric acid.	
Name the mechanism for this dehydration reaction.	
Draw the structure of each isomer.	
Isomer C Isomer D	
Name the type of structural isomerism shown by C and D .	
List alcohol A , product B and isomer C in order of increasing boiling point.	
Draw the structure of the isomer of A that is not oxidised by acidified potassium dichromate(VI).	

www.accesstuition.com

(h)		w the structure of the isomer of A that cannot be dehydrated to form an alkene by ction with concentrated sulfuric acid.	
(a)		(Total see of the isomers in part (a) is resistant to oxidation by acidified potassium promate(VI).	(1) 9 marks)
	(i)	Identify this isomer.	
	(ii)	This isomer can be dehydrated. Give a suitable dehydrating agent and write an equation for this dehydration reaction. Dehydrating agent	
		Equation	
(b)	(i)	Identify the isomer in part (a) which can be oxidised to a ketone. Give the structure the ketone formed. Isomer	(3)
		Structure of the ketone	
	(ii)	Identify one of the isomers in part (a) which can be oxidised to an aldehyde. Give the structure of the aldehyde formed. Isomer Structure of the aldehyde	ne

5.

(iii)	Give a reagent that can be used in a test to distinguish between a ketone and an aldehyde. State what you would observe in the test.
	Reagent
	Observation with ketone
	Observation with aldehyde
	an-1-ol can be oxidised to form a carboxylic acid. Using [O] to represent the oxidising nt, write an equation for this reaction and name the product.
Equ	ation
-	ne of product
	(Total 12 ma