

A-Level Chemistry

Enthalpy Change

Question Paper

Time available: 58 minutes Marks available: 53 marks

1. This question is about enthalpy changes.
(a) Define the term enthalpy change.
\qquad
\qquad
\qquad
(b) Propane undergoes complete combustion.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta H=-2046 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

The table below shows some bond enthalpy data.

Bond	$\mathrm{C}-\mathrm{H}$	$\mathrm{C}=\mathrm{O}$	$\mathrm{O}-\mathrm{H}$
Mean bond enthalpy / kJ mol^{-1}	412	743	463

The bond enthalpy for $\mathrm{O}=\mathrm{O}$ is $496 \mathrm{~kJ} \mathrm{~mol}^{-1}$
For $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Delta H=+41 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Use these data to calculate a value for the $\mathrm{C}-\mathrm{C}$ bond enthalpy in propane.
\qquad $\mathrm{kJ} \mathrm{mol}^{-1}$
(c) Explain why the value given for the $\mathrm{O}=\mathrm{O}$ bond enthalpy in part (b) is not a mean value.
\qquad
\qquad
\qquad
2. A bomb calorimeter can be used for accurate determination of the heat change during combustion of a fuel.

A bomb calorimeter is a container of fixed volume that withstands the change in pressure during the reaction.

The fuel is mixed with pure oxygen in the calorimeter, ignited and the temperature change is recorded.

The total heat capacity ($C_{\text {cal }}$) of the calorimeter is calculated using a fuel for which the heat change is known.

In an experiment to calculate $C_{\text {cal }}, 2.00 \mathrm{~g}$ of hexane ($M_{\mathrm{r}}=86.0$) is ignited. A temperature change (ΔT) of $12.4^{\circ} \mathrm{C}$ is recorded.

Under the conditions of the experiment, 1.00 mol of hexane releases 4154 kJ of energy when combusted.
(a) The heat energy released in the calorimeter, $q=C_{\text {cal }} \Delta T$

Calculate the heat capacity ($C_{\text {cal }}$) in $\mathrm{kJ} \mathrm{K}^{-1}$

$$
C_{\mathrm{cal}} \ldots \mathrm{~kJ} \mathrm{~K}^{-1}
$$

(b) When the experiment is repeated with 2.00 g of octane $\left(M_{\mathrm{r}}=114.0\right)$ the temperature change recorded is $12.2^{\circ} \mathrm{C}$

Calculate the heat change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for octane in this combustion reaction.
If you were unable to calculate a value for $C_{\text {cal }}$ in part (a), use $6.52 \mathrm{~kJ} \mathrm{~K}^{-1}$ (this is not the correct value).

$$
\text { Heat change ___ } \mathrm{kJ} \mathrm{~mol}^{-1}
$$

(c) State why the heat change calculated from the bomb calorimeter experiment is not an enthalpy change.
\qquad
\qquad
\qquad
(d) The thermometer used to measure the temperature change of $12.2^{\circ} \mathrm{C}$ in part (b) has an uncertainty of $\pm 0.1^{\circ} \mathrm{C}$ in each reading.

Calculate the percentage uncertainty in this use of the thermometer.
Suggest one change to this experiment that decreases the percentage uncertainty while using the same thermometer.

Percentage uncertainty

\qquad
Change \qquad
\qquad
\qquad
3. A student calculated that a value for the enthalpy change of neutralisation
is $-51.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
The design of a possible hand-warmer using hydrochloric acid and sodium hydroxide was discussed. It was proposed that $500 \mathrm{~cm}^{3}$ of hydrochloric acid should be used in a flexible, sealed plastic container with a breakable tube of solid sodium hydroxide also in the container. On breaking the tube, the sodium hydroxide would be released, react with the acid and produce heat.
A $40^{\circ} \mathrm{C}$ temperature rise was thought to be suitable.
(a) Calculate the heat energy, in J , required to raise the temperature of the reaction mixture by $40^{\circ} \mathrm{C}$. Assume that the reaction mixture has a density of $1.00 \mathrm{~g} \mathrm{~cm}^{-3}$ and a specific heat capacity of $4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$.
Assume that all of the heat energy given out is used to heat the reaction mixture.
\qquad
\qquad
\qquad
\qquad
(b) Use your answer from part (a) and the value for the enthalpy change of neutralisation of $-51.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ to calculate the minimum amount, in moles, and hence the minimum mass of sodium hydroxide required in the breakable tube.
(If you could not complete the calculation in part (a) assume that the heat energy required was 77400 J . This is not the correct answer).

Show your working.
Moles of NaOH \qquad
\qquad
Mass of NaOH \qquad
\qquad
(c) Use the amount, in moles, of sodium hydroxide from part (b) to calculate the minimum concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of hydrochloric acid required in the $500 \mathrm{~cm}^{3}$ of solution used in the sealed container.
\qquad
\qquad
\qquad
(d) Suggest one possible risk to a person who uses a hand-warmer containing sodium hydroxide and hydrochloric acid.
\qquad
\qquad
(e) A commercial hand-warmer uses powdered iron sealed in a plastic container. A valve allows air to enter the container, and oxygen in the air reacts slowly with the iron to form solid iron(III) oxide. The heat released warms the container.
(i) Write an equation for this reaction between iron and oxygen to form iron(III) oxide.
(ii) One version of an iron-oxygen hand-warmer advertises that it is designed to stay warm for up to four hours.
Other than by increasing the amount of iron in the container, state one change to the iron in the hand-warmer that would increase this time.
Explain why this change to the iron might not be an advantage.
Change to the iron \qquad
\qquad
Explanation \qquad
\qquad
\qquad
(f) Another type of hand-warmer uses sodium thiosulfate. Sodium thiosulfate is very soluble in water at $80^{\circ} \mathrm{C}$ but is much less soluble at room temperature.
When a hot, concentrated solution of sodium thiosulfate is cooled it does not immediately crystallise. The sodium thiosulfate stays dissolved as a stable 'super-saturated' solution until crystallisation is triggered.
Heat energy is then released when the sodium thiosulfate crystallises.
(i) This type of hand-warmer is re-usable.

Suggest one environmental advantage that a sodium thiosulfate hand-warmer has over the other two types.
\qquad
(ii) Describe the two steps that you would take to make the sodium thiosulfate hand-warmer ready for re-use.

Step 1 \qquad
\qquad
Step 2 \qquad
\qquad
4. (a) The table below contains some mean bond enthalpy data.

Bond	$\mathrm{H}-\mathrm{O}$	$\mathrm{O}-\mathrm{O}$	$\mathrm{O}=\mathrm{O}$
Mean bond enthalpy/kJ mol			

The bonding in hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, can be represented by $\mathrm{H}-\mathrm{O}-\mathrm{O}-\mathrm{H}$. Use these data to calculate the enthalpy change for the following reaction.

$$
\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})
$$

\qquad
\qquad
\qquad
\qquad
(b) The standard enthalpy of formation, $\Delta H_{\mathrm{f}}^{\ominus}$ for methane, is $-74.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Write an equation, including state symbols, for the reaction to which this enthalpy change applies.
\qquad
(c) The enthalpy changes for the formation of atomic hydrogen and atomic carbon from their respective elements in their standard states are as follows.

$$
\begin{array}{ll}
\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}(\mathrm{~g}) & \Delta H^{\ominus}=+218 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{C}(\mathrm{~s}) \rightarrow \mathrm{C}(\mathrm{~g}) & \Delta H^{\ominus}=+715 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

(i) By reference to its structure, suggest why a large amount of heat energy is required to produce free carbon atoms from solid carbon.
\qquad
\qquad
(ii) Parts (b) and (c) give enthalpy data for the formation of $\mathrm{CH}_{4}(\mathrm{~g}), \mathrm{H}(\mathrm{g})$ and $\mathrm{C}(\mathrm{g})$. Use these data and Hess's Law to calculate the value of the enthalpy change for the following reaction.

$$
\mathrm{CH}_{4}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{~g})+4 \mathrm{H}(\mathrm{~g})
$$

\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Use your answer from part (c)(ii) to calculate a value for the mean bond enthalpy of a $\mathrm{C}-\mathrm{H}$ bond in methane.
\qquad
5. (a) Define the term standard enthalpy of formation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) State Hess's Law and use it, together with the data given in the table below, to calculate the standard enthalpy change for the following reaction.
$\mathrm{MgO}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

	MgO	$\mathrm{HCl}(\mathrm{g})$	MgCl_{2}	$\mathrm{H}_{2} \mathrm{O}$
$\Delta H_{\mathrm{f}}^{\ominus} / \mathrm{kJ} \mathrm{mol}^{-1}$	-602	-92	-642	-286

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) In an experiment, an excess of solid magnesium oxide was added to $50 \mathrm{~cm}^{3}$ of
$3.0 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid. The initial temperature of the solution was $21^{\circ} \mathrm{C}$. After reaction, the temperature had risen to $53^{\circ} \mathrm{C}$. (The specific heat capacity of water is 4.2 $\mathrm{JK}^{-1} \mathrm{~g}^{-1}$)

Use this information to calculate the enthalpy change for the reaction of one mole of magnesium oxide with hydrochloric acid. For your calculation you should assume that all the heat from the reaction is used to raise the temperature of 50 g of water.
\qquad

