

A-Level Chemistry

Equilibria and Le Chatelier's Principle

Mark Scheme

Time available: 62 minutes Marks available: 54 marks

www.accesstuition.com

1.

This quest	This question is marked using levels of response. Refer to the Mark Scheme nstructions for Examiners for guidance on how to mark this question.			
Level 3 5-6 Marks	All stages are covered and the explanation of each stage is generally correct and virtually complete. Answer is well structured with no repetition or irrelevant points. Accurate and clear expression of ideas with no errors in use of technical terms.			
Level 2 3-4 Marks	All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer shows some attempt at structure. Ideas are expressed with reasonable clarity with, perhaps, some repetition or some irrelevant points. Some minor errors in use of technical terms.			
Level 1 1-2 Marks	Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes isolated statements but these are not presented in a logical order or show some confusion. Answer may contain valid points which are not clearly linked to an argument structure. Errors in the use of technical terms.			
Level 0	Insufficient correct chemistry to gain a mark.			

Indicative chemistry content

Stage 1: Temperature

1a. The reaction is endothermic (so equilibrium shifts to RHS to reduce the temperature)1b. So, higher temperature increases the yield 1c. High temperatures are costly (so compromise temperature used)

Stage 2: Pressure

2a. More moles of gas on the right hand side, (so equilibrium shifts to RHS to increase the yield)2b. So, lower pressure increases the yield

2c. A low pressure means a low cost

Stage 3: Catalyst

- 3a. Catalyst has no effect on yield
- 3b. Adding a catalyst allows a lower temperature to be used
- 3c. So, this lowers the cost

Page 3 of 9

(a) M1 $\frac{[CO]^2 [H_2]^4}{[C_2H_5OH] [H_2O]}$ M2 mol⁴ dm⁻¹²
M2 allow for units that are consequential on M1
(b) M1 clear attempt made to divide moles by volume to find concentrations
7.66 x 10⁻³ scores M1,2,3
7.66 x 10⁻¹⁵ scores M1,3
M1 can use 0.750 or 750 (or 75, 7.5, 0.075, 0.0075, etc)
1

M2
$$\frac{\left[\frac{0.110}{0.750}\right]^2 \left[\frac{0.220}{0.750}\right]^4}{\left[\frac{0.075}{0.750}\right] \left[\frac{0.156}{0.750}\right]}$$

$$M2 \frac{(0.147)^2 (0.293)^4}{(0.100) (0.208)} \text{ or } \frac{(0.0215) (0.00740)}{(0.100) (0.208)}$$

for **M2** volume used must be 0.750 or 750 (if use V at this stage, then must be one of these values of V used later on)

M3 7.66 x 10⁻³

2.

M3 ignore units

If moles are used in place of concentration

penalise M1, but M2 and M3 could score for ECF

 $M2 \ \frac{(0.110)^2 \ (0.220)^4}{(0.075) \ (0.156)} \ M3 \ 2.42 \ x \ 10^{-3}$

Allow ECF if incorrect expression for K_c is used

1

1

	(c)	M1	yield would decrease		
			mark each point independently	_	
				1	
		M2	equilibrium (position) moves left / shifts left / in direction of reverse reaction		
			to oppose increase in pressure / to reduce pressure		
			M2 need both parts; ignore favours reverse reaction for the first part		
				1	
		М3	fewer moles/molecules of gas on left hand side / fewer moles/molecules of gaseous reactants		
			M3 2 moles/molecules (of gas) on left hand side v 6		
			moles/molecules (of gas) on right hand side	1	
		R <i>A 4</i>	no offect on K		
		1014	no effect of κ_c	1	
					[9]
2	(a)	3 mir	nutes		
з.			M2 dependent on M1 or near miss		
				1	
		(At e	quilibrium, rate _{fwd} = rate _{back} so) concentrations (of O_2 and SO_3) remain constant		
			Not concentrations are the same/equal		
			Allow (after this point) gradient is zero / curve flattens out	1	
	<i>4</i> \			T	
	(b)	Sket	ch begins at origin <u>and</u> goes up until 3 mins	1	
		Leve	Is off at 0.3 mol dm ⁻³		
			Mark Independently	1	
	(c)	T ₂ (N	lot worth a mark alone)		
	(0)	• 2 (• •	$T_1, CE=0$		
		Equi	Both RHS / forward and endothermic needed		
				1	
		Eauil	librium has opposed the increase in T / Equilibrium moves to decrease the T		
		-1	Not just to oppose the change		
				1	
					[6]

(a)

M1 no effect (on yield)

CE = 0 if yield changes

M2 increases rate / speed of both / forward and reverse reactions <u>equally / by the same</u> <u>amount</u>

> If no reference to effect on yield, could still score **M2** Ignore reference to no change in position of equilibrium, and reference to lowering activation energies **M2** allow changes rate of both / forward and reverse reactions equally / by the same amount

(b)
$$(K_c =) \frac{[CH_3OH]}{[CO][H_2]^2}$$

Must be square brackets Ignore state symbols Ignore units

(c) M1 divides moles by volume (0.250 or
$$\frac{250}{1000}$$
)

M2
$$K_c = \frac{\frac{0.0610}{0.250}}{\left[\frac{0.340}{0.250}\right]^{\left[\frac{0.190}{0.250}\right]^2}} \left(=\frac{0.244}{1.36 \times 0.76^2}\right)$$

M3 0.311

Correct answer scores 3; **M3** to at least 2sf (0.3106159 ...); ignore units Allow ECF from **M1** to **M2** if an attempt to calculate concentration

has been made by dividing by some factor of 250 cm³

Allow ECF from **M2** to M3 for use of an expression containing each reagent in a correctly substituted K_c expression

If volume not used, then allow M3 only for 4.97 (4.96985 ... to at least 2sf)

1

1

1

1

1

	(d)	M1 _	$\frac{1}{nswer to (c)} = 3.22$		
			M1 to at least 2sf (0.31 gives 3.2(258))		
			M1 = 1.21 if alternative answer to 8.3 used		
			If an error was made in 8.3, but the candidate produced an answer in 8.4 that did fit the inverted calculation from 8.3, then candidate could score M1	1	
		M2 m	$nol^2 dm^{-6}$		
			(if volumes are not used, then candidate would get 0.20(12.)		
				1	
					[8]
	(a)	Initial a	mount of A = 6.4 x 10^{-3}		
5.	(4)	initial a	If M1 wrong can score max 3		
				M1	
		Equ A -	$-6.4 \times 10^{-3} - 2 \times 125 \times 10^{-3}$		
		Equ A -	$\int \frac{1}{2} \int $		
				M2	
		P _ 0 5	$x = 10^{-3}$ $x = 9.25 \times 10^{-3}$		
		D = 9.5	Allow 2 or more sig figs		
			Allow 2 of more sig ligs	М3	
		0 0 0	40-2 . 0 0.0040		
		C = 2.8	$3 \times 10^{-2} + 3 \times = 0.0318$	M4	
		_			
		D = x =	= 1.25 × 10 ^{−3}	M5	
				1415	
	(b)	$K_{c} = \frac{[C]}{[C]}$	<u>}]³[D]</u>		
	()		J²[B]		
			Penalise () but mark on in (b) & (c)	1	
				1	
		Units =	mol dm ⁻³		
			If K_c wrong no mark for units		
				1	

	(c)	M1 for correct rearrangement $[A]^2 = \frac{[C]^3[D]}{K_c[B]}$ or $[A] = \sqrt{\frac{[C]^3[D]}{K_c[B]}}$		
		If K_c wrong in (b) can score 1 for dividing by correct volume		
			M1	
		M2 for division of mol of B, C and D by correct volume		
		If K _c correct but incorrect rearrangement can score		
		1 for dividing by correct volume		
			M2	
		$[1.05]_{0.5]^3}[0.076_{0.5}]$		
		$[A] = \frac{116 \times [0.21/0.5]}{116 \times [0.21/0.5]}$		
		M3 for final answer: $[A] = 0.17$ (must be 2 sfs)		
			M3	
	(d)	(All) conc fall: (ignore dilution)		
		$OR K_c = mole ratio \times 1/V$	1	
			1	
		Equm moves to side with more moles		
		If vol increases, mole ratio must increase	1	
			1	
		To oppose the decrease in conc		
		To keep K_c constant		
		If prossure falls $CE=0$		
			1	
				[13]
	(a)	Decrease		
6.	()		1	
		Increasing pressure moves equilibrium to the side of least moles i.e. backward reaction		
			1	
		To oppose the increase in pressure or to decrease the pressure		
			1	
	(b)	A catalyst speeds up the rate of the forward and backward reaction		
			1	
		By the same amount		
			1	
	(c)	$\Lambda H = -111 - (-75 - 242)$		
	(-)		1	
		206 (k.l.mol ⁻¹)		
			1	

	1
$\Delta G = \Delta H - T \Delta S$	1
$0 = 206 - T \frac{216}{1000}$	
1000	1
T = 953.7 or 954 K	1
T = 681 (°C)	
If the value given in the question is used then the answer is 283 (°C)	
	1
	[12]