

A-Level Chemistry Equilibria and Le Chatelier's Principle Question Paper

Time available: 62 minutes Marks available: 54 marks

www.accesstuition.com

1	_
-	•

Hydrogen can be prepared on an industrial scale using the reversible reaction between methane and steam.

$$CH_4(g) + H_2O(g) \Rightarrow CO(g) + 3 H_2(g)$$
 $\Delta H = +206 \text{ kJ mol}^{-1}$

The reaction is done at a temperature of 800 $^{\circ}$ C and a low pressure of 300 kPa in the presence of a nickel catalyst.

Explain, in terms of equilibrium yield and cost, why these conditions are used.

(Total 6 marks)

2.

Hydrogen gas can be made by reacting ethanol with steam in the presence of a catalyst.

$$C_2H_5OH(g) + H_2O(g) = 2 CO(g) + 4 H_2(g)$$

(a) Give an expression for K_c for this equilibrium.

State its units.

Kc

Units of K_c _____

(2)

(b) The table shows the amount of each substance in an equilibrium mixture in a container of volume 750 cm³

Substance	C ₂ H ₅ OH(g)	H ₂ O(g)	CO(g)	H ₂ (g)
Amount of substance / mol	0.0750	0.156	0.110	0.220

Calculate $K_{\rm c}$

Kc

(3)

The pressure of the equilibrium mixture was increased by reducing the volume of the container at constant temperature.	•
Predict the effect of increasing the pressure on the equilibrium yield of hydrogen. Expour answer.	olain
Predict the effect of increasing the pressure on the value of \mathcal{K}_{c}	
Effect on equilibrium yield of hydrogen	
Explanation	
Effect on value of K_c	
(1	otal 9 mark

3.

This question is about equilibrium.

Sulfur trioxide decomposes to form sulfur dioxide and oxygen at temperature T_1 according to the equilibrium shown.

$$2SO_3(g) = 2SO_2(g) + O_2(g)$$
 $\Delta H = +196 \text{ kJ mol}^{-1}$

$$\Delta H = +196 \text{ kJ mol}^{-1}$$

The graph shows the concentrations of sulfur trioxide and of oxygen over a period of 6 minutes at temperature T₁

(a) State the time, to the nearest minute, when equilibrium is first established. Explain your answer.

Time _____ minutes

Explanation

(b) Sketch on the graph above how the concentration of sulfur dioxide changes over these 6 minutes at temperature T_1

(2)

(2)

	The temperature of the mixture was changed to T_2 and the mixture left to establish a new equilibrium. In the new equilibrium mixture the concentration of sulfur trioxide was found to be 0.07 mol dm ⁻³
	Deduce which of T_1 and T_2 is the higher temperature. Explain your deduction.
	Higher temperature
	Explanation
	(Total 6 ma
Meth	nanol can be manufactured in a reversible reaction as shown by the equation.
	$CO(g) + 2H_2(g) = CH_3OH(g)$
(0)	
(a)	State and explain the effect of using a catalyst on the yield of methanol in this equilibrium.
(a)	State and explain the effect of using a catalyst on the yield of methanol in this equilibrium.
(a)	
(a)	

(1)

(c)	A mixture of carbon monoxide and hydrogen was allowed to reach equilibrium in a container of volume 250 cm 3 at temperature T .	
	At equilibrium, the mixture contained 0.340 mol of carbon monoxide, 0.190 mol of hydrogen and 0.0610 mol of methanol.	
	Calculate the value of the equilibrium constant (K_c) for this reaction at temperature T .	
	\mathcal{K}_{c} mol $^{-2}$ dm 6	(3)
(d)	Methanol decomposes on heating in a reaction that is the reverse of that used in its manufacture.	(0)
	$CH_3OH(g) \Rightarrow CO(g) + 2H_2(g)$	
	Use your answer from part (c) to determine the value of K_c for this equilibrium at temperature T . State the units for this value of K_c	
	(If you were unable to complete the calculation in part (c), assume a value of $K_c = 0.825 \text{ mol}^{-2} \text{ dm}^6$. This is not the correct value.)	
	Value of K _c	
	Units of <i>K</i> _c	
	(Total 8 ma	(2) rks)

	$2\mathbf{A} + \mathbf{B} = 3\mathbf{C} + \mathbf{D}$		
(a)	A beaker contained 40 cm^3 of a 0.16 mol dm^{-3} aqueous solution of A. 9.5×10^{-3} mol of B and 2.8×10^{-2} mol of C were added to the beaker and the mixture was left to reach equilibrium. The equilibrium mixture formed contained 3.9×10^{-3} mol of A .		
	Calculate the amounts, in moles, of B , C and D in the equilibrium mixture.		
	Amount of B mol		
	Amount of C mol		
	Amount of D mol	4- 3	
(b)	Give the expression for the equilibrium constant (K_c) for this equilibrium and its units.	(5)	
(b)	$K_{\rm c}$		
	, · · · · · · · · · · · · · · · · · · ·		
	Units		
		(2)	

Compounds ${\bf A}$ and ${\bf B}$ react together to form an equilibrium mixture containing compounds ${\bf C}$ and

5.

D according to the equation

Ć	A different equilibrium mixture of these four compounds, at a different temperature, contained 0.21 mol of B , 1.05 mol of C and 0.076 mol of D in a total volume of 5.00×10^2 cm ³ of solution.	
A	At this temperature the numerical value of K_c was 116	
	Calculate the concentration of $\bf A$, in mol dm $^{-3}$, in this equilibrium mixture. Give your answer to the appropriate number of significant figures.	
	Concentration of A mol dm	
/ -I\		(3)
	Justify the statement that adding more water to the equilibrium mixture in part (c) wil the amount of ${f A}$ in the mixture.	lower
_		
_		•
_		
_		
_		
_		-
_		
	(To	(3) otal 13 marks)

	Hydrogen can be manufactured by the reaction of methane with steam. An equilibrium is established as shown by the equation.		
		$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$	
	(a)	Use Le Chatelier's principle to predict the effect on the equilibrium yield of hydrogen if the overall pressure is increased. Explain your answer.	
Effect on yieldExplanation			
	(b)	Explain why the equilibrium yield of hydrogen is unchanged if a catalyst is used in the reaction.	

(2)

(c) The table shows the standard enthalpy of formation and the standard entropy for each substance in this equilibrium reaction.

	CH ₄ (g)	H ₂ O(g)	CO(g)	H ₂ (g)
$\Delta_{\mathrm{f}}H^{\mathrm{ heta}}$ / kJ mol $^{-1}$	-75	-242	-111	0
Sθ / J K ⁻¹ mol ⁻¹	186	189	198	131

Use data from the table to calculate the standard enthalpy change for this equilibrium reaction.

Standard enthalpy change _	kJ mol ⁻¹
----------------------------	----------------------

(2)

Use your answer from part **(c)** and the entropy data from the table above to calculate the minimum temperature, in °C, needed for this reaction to be feasible. Give your answer to the appropriate number of significant figures.

(If you did not complete part **(c)** you should assume a value of 120 kJ mol⁻¹ for the standard enthalpy change. This is **not** the correct value).

Minimum temperature _____ °C

(5)

(Total 12 marks)