

A-Level Chemistry

Formation of Coloured Ions

Mark Scheme

Time available: 60 minutes Marks available: 56 marks

www.accesstuition.com

Mark schemes

1.	(a)	M1	absorb (some) wavelengths/frequencies/colours/energies of (visible) light wavelengths/frequencies/colours/energies of (visible) light only needed once in the answer	
			Allow absorption of a photon of light NOT uv light	1
		M2	to promote/excite electrons in d-orbitals	
			Allow d-subshell / d-energy level / d-electrons Reference to 'd' can appear anywhere in the answer	1
		М3	remaining/complementary wavelengths/frequencies/colours/energies of (visible) light reflected/transmitted (to give colour seen)	1
			NOT emissions/emitting or 'give out'	1
	(b)	M1	$(\Delta)E = \frac{hc}{\lambda}$	
			Allow in two stages / expressed in words	1
		M2	490×10^{-9}	
			M2 for conversion	1
		М3	$= (6.63 \times 10^{-34} \times \frac{3.00 \times 10^8}{490 \times 10^{-9}} _{490 \times 10^{-9}}) = 4.06 \times 10^{-19} \text{ J}$	
			Correct answer scores 3 marks	
			4.06×10^{-n} scores 2 marks (no M2)	
			$9.75 \times 10^{-32} = 1 \text{ mark (M2)}$	
				1
	(c)	M1	measure absorbance for (a range of) known concentrations	
			Insist on description of taking measurements	1
		M2	plot graph absorbance v concentration	
			Allow concentration v absorbance	1
		М3	read value of concentration for the measured absorbance from this graph	
			If no M1, must mention both variables	
			Need to describe HOW they use the graph	
				1

	(d)	M1 am	nount of iron in each tablet = $4.66 \times 10^{-3} \times \frac{250}{1000}$ (= 0.001165 mol)	1	
		M2 ma	ass of iron in each tablet = 4.66 x 10^{-3} x $\frac{250}{250}$ x 55.8 = 0.0650 a = 65 ma	I	
			$\int \frac{1}{1000} = 0.0000 \ g = 0$		
			Correct answer = 2 marks Allow M2 for (M1 x 55.8 x 1000)		
				1	
					[11]
2	(a)	$\Delta E = hv$			
Ζ.			Allow = hf		
				1	
		$v = \Delta E / I$	$h = 2.84 \times 10^{-19} / 6.63 \times 10^{-34} = 4.28 \times 10^{14} \text{ s}^{-1} / \text{Hz}$		
			Allow $4.3 \times 10^{14} \mathrm{s}^{-1} / \mathrm{Hz}$		
			Answer must be in the range:		
			$4.28 - 4.30 \times 10^{14}$		
				1	
	(b)	(One colo	our of) light is absorbed (to excite the electron)		
			If light emitted, $CE = 0$	1	
				1	
		The rema	aining colour / frequency / wavelength / energy is transmitted (through the		
		oolation)	Allow light reflected is the colour that we see.		
			5	1	
	(c)	Bigger			
				1	
		Blue light	t would be absorbed		
			that has greater operay than red light would be absorbed		
		OR light	For frequency (of light absorbed / blue light) leads to higher ΔE		
		-	Can only score M2 if M1 is correct.		
				1	
	(d)	Any thre	e from:		
		• (ld	entity of the) metal		
		• (Id	entity of the) ligands		
		• Co	-ordination number / number of ligands		
		• Sh	ape	3 max	
				- 1114/4	[9]
	(a)	Orange o	lichromate		
3.	(u)	Change	Allow max 2 for three correct colours not identified to species but in		
			correct order		

www.accesstuition.com

1

	Changes to (Note greer	purple / green / ruby / red-violet / violet Chromium(III) n complex can be [Cr(H ₂ O) ₅ Cl] ²⁺ etc) <i>Do not allow green with another colour</i>	
	That chang	es further to blue Chromium(II) Allow max 1 for two correct colours not identified but in correct order	1
	[Cr ₂ O ₇] ²⁻ +	14H ⁺ + 3Zn → 2Cr ³⁺ + 3Zn ²⁺ + 7H ₂ O	
	2Cr ³⁺ + Zn	\rightarrow 2Cr ²⁺ + Zn ²⁺ /	
		Ignore any further reduction of Cr ²⁺	1
	[Cr ₂ O ₇] ²⁻ +	$14H^+ + 4Zn \rightarrow 2Cr^{2+} + 4Zn^{2+} + 7H_2O$	
		Ignore additional steps e.g. formation of CrO_4^{2-}	1
(b)	Green prec	ipitate	1
	(Dissolves t	to form a) green solution Solution can be implied if 'dissolves' stated	1
	[Cr(H ₂ O) ₆] ³	⁺ + 3OH ⁻ → Cr(H ₂ O) ₃ (OH) ₃ + 3H ₂ O Penalise Cr(OH) ₃ once only	1
	Cr(H ₂ O) ₃ (O	$(H)_3 + 3OH^- \rightarrow [Cr(OH)_6]^{3-} + 3H_2O$ $Allow [Cr(H_2O)_6]^{3+} + 6OH^- \rightarrow [Cr(OH)_6]^{3-} + 6H_2O$ $Allow formation of [Cr(H_2O)_2(OH)_4]^- and [Cr(H_2O)(OH)_5]^{2-} in balanced equations$ Ignore state symbols, mark independently	1
(c)	(ligand) sub	ostitution / replacement / exchange Allow nucleophilic substitution	
	The energy	levels/gaps of the <u>d</u> electrons are <u>different</u> (for each complex) Ignore any reference to emission of light	1
	So a <u>differe</u> electrons a	nt wavelength/frequency/colour/energy of light is absorbed (when d re excited)	
	OR light is a transmitted	absorbed and a different wavelength/frequency/colour/energy (of light) is /reflected	1

(d)	ΕO	₂ (/ H ₂ O) > <i>E</i> Cr ³⁺ (/ Cr ²⁺) / e.m.f = 1.67 V		
		Allow $E(cell) = 1.67$		
			1	
	So (Cr ²⁺ ions are oxidised by oxygen/air		
		Allow any equation of the form:		
		$Cr^{2+} + O_{2} \rightarrow Cr^{3+}$		
			1	
	14/:46	$[0,r/(1,0), 1^{2}$		
	vvitr	$1[Cr(H_2O)_6]^{2+}$ get $CrCO_3$		
		It named must be chromium(II) carbonate	1	
	with	$[Cr(H_2O)_6]^{3+}$ get $Cr(H_2O)_3(OH)_3$ / $Cr(OH)_3$		
		Allow 0 to 3 waters in the complex		
			1	
	and	CO ₂		
		Can score M3, M4, M5 in equations even if unbalanced		
			1	
	Cr(II	I) differs from Cr(II) because it is acidic / forms H ⁺ ions		
	,		1	
	boor	auso Cr ³⁺ ion polarisos wator		
	Dece	Ignore charge/size ratio and mass/charge		
		ignore charge/size ratio and mass/charge	1	
			[19)]
(\mathbf{a})	(i)	absorbs (cortain fraguancias of) (white) light (photons		
(a)	(1)	not absorbs white / u.v. light		
		not absorbs write / u.v. light	1	
		<u>a</u> electrons excited / promoted		
		or <u>d</u> electrons move between levels / orbitals		
		d electrons can be implied elsewhere in answer	1	
		the colour observed is the light not absorbed / light		
		renected / light transmitted		
		anow plue light transmitted		
			1	

4.

(ii)	ΔE is the energy gained by the (excited) electrons (of Cu ²⁺)			
	allow:			
	 energy difference between orbitals / sub-shells 			
	 energy of photon / light absorbed 			
	 change in energy of the electrons energy lost by excited electrons 			
	 energy of photon / light emitted 			
		1		
	h (Planck's) constant			
		1		
	v frequency of light (absorbed by $Cu^{2+}(aq)$)			
	do not allow wavelength			
	If energy lost / photon lost / light emitted in M1 do not penalised light emitted			
		1		
(iii)	$[Cu(H_2O)_6]^{2+} + 4Cl^- \rightarrow [CuCl_4]^{2-} + 6H_2O$			
	note that $[CuCl_4^{-}]^{2-}$ is incorrect			
	penalise charges shown separately on the ligand and overall penalise HCI			
		1		
	tetrahedral			
		1		
	CI ⁻ / CI / chlorine too big (to fit more than 4 round Cu)			
	allow			
	water smaller than CF			
	explanation that change in shape is due to change in			
		1		

°______

(b)

(c)

allow:

		anow.	
		 ion drawn with any bond angles 	
		 ion in square brackets with overall / 2- charge shown outside the brackets 	
		 ion with delocalised O=C–O bonds in carboxylate group(s) 	1
			1
lone	<u>pair</u> (s)	on O^- / O	
		allow position of lone pair(s) shown on O in the diagram even if the diagram is incorrect.	
			1
(i)	[Cu(⊦	$(H_2O)_6]^{2+} + 2C_2O_4^{2-} \rightarrow [Cu(C_2O_4)_2(H_2O)_2]^{2-} + 4H_2O^{2-}$	
	produ	uct correct	
			1
	equa	tion balanced	
			1
	6		
		note can only score M3 and M4 if M1 awarded or if complex in equation has 2 waters and 2 ethanedioates	1
			1
	octah	nedral	
		If this condition is satisfied the complex can have the	
		wrong charge(s) to allow access to M3 and M4 but not M1	1

(ii)

ignore charges diagram must show both ethanedioates with correct bonding ignore water

90°

allow 180°

mark bond angle independently but penalise if angle incorrectly labelled / indicated on diagram

[17]

1

1