

A-Level Chemistry

Formation of Coloured Ions

Mark Scheme

Time available: 60 minutes Marks available: 56 marks

1. (a) M1 absorb (some) wavelengths/frequencies/colours/energies of (visible) light wavelengths/frequencies/colours/energies of (visible) light only needed once in the answer
Allow absorption of a photon of light NOT uv light

M2 to promote/excite electrons in d-orbitals
Allow d-subshell / d-energy level / d-electrons Reference to 'd’ can appear anywhere in the answer

M3 remaining/complementary wavelengths/frequencies/colours/energies of (visible) light reflected/transmitted (to give colour seen)

NOT emissions/emitting or 'give out'
(b) M1 (Δ) $\mathrm{E}=\frac{h c}{\lambda}$

Allow in two stages / expressed in words

M2 $\quad 490 \times 10^{-9}$
M2 for conversion

M3 $=\left(6.63 \times 10^{-34} \times \frac{3.00 \times 10^{8}}{490 \times 10^{-9}} 490 \times 10^{-9}\right)=4.06 \times 10^{-19} \mathrm{~J}$
Correct answer scores 3 marks
4.06×10^{-n} scores 2 marks (no M2)
$9.75 \times 10^{-32}=1$ mark (M2)
(c) M1 measure absorbance for (a range of) known concentrations

Insist on description of taking measurements

M2 plot graph absorbance v concentration
Allow concentration v absorbance

M3 read value of concentration for the measured absorbance from this graph
If no M1, must mention both variables
Need to describe HOW they use the graph
(d) M1 amount of iron in each tablet $=4.66 \times 10^{-3} \times \frac{250}{1000} \quad(=0.001165 \mathrm{~mol})$

M2 mass of iron in each tablet $=4.66 \times 10^{-3} \times \frac{250}{1000} \times 55.8=0.0650 \mathrm{~g}=65 \mathrm{mg}$ Correct answer $=2$ marks
Allow M2 for (M1 $\times 55.8 \times 1000$)
2. (a) $\Delta E=h v$

Allow $=h f$
$v=\Delta E / h=2.84 \times 10^{-19} / 6.63 \times 10^{-34}=4.28 \times 10^{14} \mathrm{~s}^{-1} / \mathrm{Hz}$
Allow $4.3 \times 10^{14} \mathrm{~s}^{-1} / \mathrm{Hz}$
Answer must be in the range:

$$
4.28-4.30 \times 10^{14}
$$

(b) (One colour of) light is absorbed (to excite the electron)

If light emitted, $C E=0$

The remaining colour / frequency / wavelength / energy is transmitted (through the solution)

Allow light reflected is the colour that we see.
(c) Bigger

Blue light would be absorbed
OR light that has greater energy than red light would be absorbed $O R$ higher frequency (of light absorbed / blue light) leads to higher ΔE

Can only score M2 if M1 is correct.
(d) Any three from:

- (Identity of the) metal
- Charge (on the metal) / oxidation state / charge on complex
- (Identity of the) ligands
- Co-ordination number / number of ligands
- Shape

3. (a) Orange dichromate

Allow max 2 for three correct colours not identified to species but in correct order

Changes to purple / green / ruby / red-violet / violet Chromium(III)
(Note green complex can be $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]^{2+}$ etc)
Do not allow green with another colour

1
That changes further to blue Chromium(II)
Allow max 1 for two correct colours not identified but in correct order
$\left[\mathrm{Cr}_{2} \mathrm{O}_{7}\right]^{2-}+14 \mathrm{H}^{+}+3 \mathrm{Zn} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{Zn}^{2+}+7 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{Cr}^{3+}+\mathrm{Zn} \rightarrow 2 \mathrm{Cr}^{2+}+\mathrm{Zn}^{2+} /$
Ignore any further reduction of Cr^{2+}

$$
\left[\mathrm{Cr}_{2} \mathrm{O}_{7}\right]^{2-}+14 \mathrm{H}^{+}+4 \mathrm{Zn} \rightarrow 2 \mathrm{Cr}^{2+}+4 \mathrm{Zn}^{2+}+7 \mathrm{H}_{2} \mathrm{O}
$$

Ignore additional steps e.g. formation of $\mathrm{CrO}_{4}{ }^{2-}$
1
(b) Green precipitate
(Dissolves to form a) green solution
Solution can be implied if 'dissolves' stated

$$
\begin{gathered}
{\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{O}} \\
\text { Penalise } \mathrm{Cr}(\mathrm{OH})_{3} \text { once only }
\end{gathered}
$$

$$
\text { Allow }\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+6 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}+6 \mathrm{H}_{2} \mathrm{O}
$$

Allow formation of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}\right]^{-}$and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{OH})_{5}\right]^{2-}$ in balanced equations
Ignore state symbols, mark independently
(c) (ligand) substitution / replacement / exchange

Allow nucleophilic substitution

The energy levels/gaps of the \underline{d} electrons are different (for each complex) Ignore any reference to emission of light

So a different wavelength/frequency/colour/energy of light is absorbed (when d electrons are excited)

OR light is absorbed and a different wavelength/frequency/colour/energy (of light) is transmitted/reflected
(d) $E \mathrm{O}_{2}\left(/ \mathrm{H}_{2} \mathrm{O}\right)>E \mathrm{Cr}^{3+}\left(/ \mathrm{Cr}^{2+}\right) /$ e.m.f $=1.67 \mathrm{~V}$

Allow $E(c e l l)=1.67$

1
So Cr^{2+} ions are oxidised by oxygen/air
Allow any equation of the form:
$\mathrm{Cr}^{2+}+\mathrm{O}_{2} \rightarrow \mathrm{Cr}^{3+}$

With $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ get CrCO_{3}
If named must be chromium(II) carbonate
with $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ get $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3} / \mathrm{Cr}(\mathrm{OH})_{3}$
Allow 0 to 3 waters in the complex
1
and CO_{2}
Can score M3, M4, M5 in equations even if unbalanced

Cr (III) differs from $\mathrm{Cr}(\mathrm{II})$ because it is acidic / forms H^{+}ions
because Cr^{3+} ion polarises water Ignore charge/size ratio and mass/charge
4. (a) (i) absorbs (certain frequencies of) (white) light / photons not absorbs white / u.v. light
d electrons excited / promoted
or \underline{d} electrons move between levels / orbitals d electrons can be implied elsewhere in answer
the colour observed is the light not absorbed / light reflected / light transmitted
allow blue light transmitted
penalise emission of light in M3
(ii) ΔE is the energy gained by the (excited) electrons (of Cu^{2+})
allow:

- energy difference between orbitals / sub-shells
- energy of photon / light absorbed
- change in energy of the electrons energy lost by excited electrons
- energy of photon / light emitted

1
h (Planck's) constant
v frequency of light (absorbed by $\mathrm{Cu}^{2+}(\mathrm{aq})$)
do not allow wavelength
If energy lost / photon lost / light emitted in M1 do not penalised light emitted
(iii) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$ note that $\left[\mathrm{CuCl}_{4}^{-}\right]^{2-}$ is incorrect
penalise charges shown separately on the ligand and overall penalise HCl
tetrahedral
$\mathrm{Cl}^{-} / \mathrm{Cl} /$ chlorine too big (to fit more than 4 round Cu)
allow
water smaller than Cl^{-}
explanation that change in shape is due to change in co-ordination number
(b)

allow:

- ion drawn with any bond angles
- ion in square brackets with overall / 2- charge shown outside the brackets
- ion with delocalised $\mathrm{O}=\mathrm{C}-\mathrm{O}$ bonds in carboxylate group(s)
lone pair(s) on $\mathrm{O}^{-} / \mathrm{O}$
allow position of lone pair(s) shown on O in the diagram even if the diagram is incorrect.
(c) (i) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2-}+4 \mathrm{H}_{2} \mathrm{O}$ product correct
equation balanced

6
note can only score M3 and M4 if M1 awarded or if complex in equation has 2 waters and 2 ethanedioates
octahedral
If this condition is satisfied the complex can have the wrong charge(s) to allow access to M3 and M4 but not M1
(ii)

ignore charges
diagram must show both ethanedioates with correct bonding ignore water
90°
allow 180°
mark bond angle independently but penalise if angle incorrectly labelled / indicated on diagram

