

A-Level Chemistry

Formation of Coloured Ions

Question Paper

Time available: 60 minutes Marks available: 56 marks

www.accesstuition.com

he iron content of iron tablets can be determined by colorimetry. lethod: Dissolve a tablet in sulfuric acid. Oxidise all the iron from the tablet to $Fe^{3+}(aq)$. Convert the $Fe^{3+}(aq)$ into a complex that absorbs light of wavelength 490 nm Make the solution up to 250 cm ³ Measure the absorbance of light at 490 nm with a colorimeter. Use a calibration graph to find the concentration of the iron(III) complex. Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm Speed of light, $c = 3.00 \times 10^8 \text{ m s}^{-1}$ Planck constant, $h = 6.63 \times 10^{-34} \text{ J s}$	(a)	Explain why complexes formed from transition metal ions are coloured.
Dissolve a tablet in sulfuric acid. Oxidise all the iron from the tablet to Fe $^{3+}$ (aq). Convert the Fe $^{3+}$ (aq) into a complex that absorbs light of wavelength 490 nm Make the solution up to 250 cm 3 Measure the absorbance of light at 490 nm with a colorimeter. Use a calibration graph to find the concentration of the iron(III) complex. Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm Speed of light, $c = 3.00 \times 10^8 \text{ m s}^{-1}$		
Dissolve a tablet in sulfuric acid. Oxidise all the iron from the tablet to Fe $^{3+}$ (aq). Convert the Fe $^{3+}$ (aq) into a complex that absorbs light of wavelength 490 nm Make the solution up to 250 cm 3 Measure the absorbance of light at 490 nm with a colorimeter. Use a calibration graph to find the concentration of the iron(III) complex. Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm Speed of light, $c = 3.00 \times 10^8 \text{ m s}^{-1}$		
Dissolve a tablet in sulfuric acid. Oxidise all the iron from the tablet to Fe $^{3+}$ (aq). Convert the Fe $^{3+}$ (aq) into a complex that absorbs light of wavelength 490 nm Make the solution up to 250 cm 3 Measure the absorbance of light at 490 nm with a colorimeter. Use a calibration graph to find the concentration of the iron(III) complex. Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm Speed of light, $c = 3.00 \times 10^8 \text{ m s}^{-1}$		
Dissolve a tablet in sulfuric acid. Oxidise all the iron from the tablet to Fe $^{3+}$ (aq). Convert the Fe $^{3+}$ (aq) into a complex that absorbs light of wavelength 490 nm Make the solution up to 250 cm 3 Measure the absorbance of light at 490 nm with a colorimeter. Use a calibration graph to find the concentration of the iron(III) complex. Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm Speed of light, $c = 3.00 \times 10^8 \text{ m s}^{-1}$		
Dissolve a tablet in sulfuric acid. Oxidise all the iron from the tablet to Fe $^{3+}$ (aq). Convert the Fe $^{3+}$ (aq) into a complex that absorbs light of wavelength 490 nm Make the solution up to 250 cm 3 Measure the absorbance of light at 490 nm with a colorimeter. Use a calibration graph to find the concentration of the iron(III) complex. Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm Speed of light, $c = 3.00 \times 10^8 \text{ m s}^{-1}$		
Dissolve a tablet in sulfuric acid. Oxidise all the iron from the tablet to Fe $^{3+}$ (aq). Convert the Fe $^{3+}$ (aq) into a complex that absorbs light of wavelength 490 nm Make the solution up to 250 cm 3 Measure the absorbance of light at 490 nm with a colorimeter. Use a calibration graph to find the concentration of the iron(III) complex. Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm Speed of light, $c = 3.00 \times 10^8 \text{ m s}^{-1}$		
Dissolve a tablet in sulfuric acid. Oxidise all the iron from the tablet to Fe $^{3+}$ (aq). Convert the Fe $^{3+}$ (aq) into a complex that absorbs light of wavelength 490 nm Make the solution up to 250 cm 3 Measure the absorbance of light at 490 nm with a colorimeter. Use a calibration graph to find the concentration of the iron(III) complex. Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm Speed of light, $c = 3.00 \times 10^8 \text{ m s}^{-1}$		
Dissolve a tablet in sulfuric acid. Oxidise all the iron from the tablet to Fe $^{3+}$ (aq). Convert the Fe $^{3+}$ (aq) into a complex that absorbs light of wavelength 490 nm Make the solution up to 250 cm 3 Measure the absorbance of light at 490 nm with a colorimeter. Use a calibration graph to find the concentration of the iron(III) complex. Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm Speed of light, $c = 3.00 \times 10^{8} \text{ m s}^{-1}$		
Dissolve a tablet in sulfuric acid. Oxidise all the iron from the tablet to Fe $^{3+}$ (aq). Convert the Fe $^{3+}$ (aq) into a complex that absorbs light of wavelength 490 nm Make the solution up to 250 cm 3 Measure the absorbance of light at 490 nm with a colorimeter. Use a calibration graph to find the concentration of the iron(III) complex. Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm Speed of light, $c = 3.00 \times 10^{8} \text{ m s}^{-1}$		
Dissolve a tablet in sulfuric acid. Oxidise all the iron from the tablet to Fe $^{3+}$ (aq). Convert the Fe $^{3+}$ (aq) into a complex that absorbs light of wavelength 490 nm Make the solution up to 250 cm 3 Measure the absorbance of light at 490 nm with a colorimeter. Use a calibration graph to find the concentration of the iron(III) complex. Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm Speed of light, $c = 3.00 \times 10^{8} \text{ m s}^{-1}$	Tho	iron content of iron tablete can be determined by colorimatry
Dissolve a tablet in sulfuric acid. Oxidise all the iron from the tablet to Fe $^{3+}$ (aq). Convert the Fe $^{3+}$ (aq) into a complex that absorbs light of wavelength 490 nm Make the solution up to 250 cm 3 Measure the absorbance of light at 490 nm with a colorimeter. Use a calibration graph to find the concentration of the iron(III) complex. Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm Speed of light, $c = 3.00 \times 10^{8}$ m s ⁻¹	ne	non content of fron tablets can be determined by colorimetry.
Oxidise all the iron from the tablet to Fe $^{3+}$ (aq). Convert the Fe $^{3+}$ (aq) into a complex that absorbs light of wavelength 490 nm Make the solution up to 250 cm 3 Measure the absorbance of light at 490 nm with a colorimeter. Use a calibration graph to find the concentration of the iron(III) complex. Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm Speed of light, $c = 3.00 \times 10^8 \text{ m s}^{-1}$	∕leth	
Convert the Fe $^{3+}$ (aq) into a complex that absorbs light of wavelength 490 nm Make the solution up to 250 cm 3 Measure the absorbance of light at 490 nm with a colorimeter. Use a calibration graph to find the concentration of the iron(III) complex. Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm Speed of light, $c = 3.00 \times 10^8$ m s ⁻¹		
Make the solution up to 250 cm ³ Measure the absorbance of light at 490 nm with a colorimeter. Use a calibration graph to find the concentration of the iron(III) complex. Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm Speed of light, $c = 3.00 \times 10^8 \text{ m s}^{-1}$)	
Measure the absorbance of light at 490 nm with a colorimeter. Use a calibration graph to find the concentration of the iron(III) complex. Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm Speed of light, $c = 3.00 \times 10^8 \text{ m s}^{-1}$	•	
Use a calibration graph to find the concentration of the iron(III) complex. Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm Speed of light, $c = 3.00 \times 10^8 \text{ m s}^{-1}$	•	•
Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm Speed of light, $c = 3.00 \times 10^8 \text{ m s}^{-1}$	•	
Speed of light, $c = 3.00 \times 10^8 \text{ m s}^{-1}$	•	Use a calibration graph to find the concentration of the iron(III) complex.
	(b)	Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm
Planck constant, $h = 6.63 \times 10^{-34} \mathrm{J}\mathrm{s}$		Speed of light, $c = 3.00 \times 10^8 \text{ m s}^{-1}$
		Planck constant, $h = 6.63 \times 10^{-34} \text{J s}$
Energy gained by each electron J		Energy gained by each electron

www.accesstuition.com

(3)

c)	Describe how a calibration graph is produced and used to find the concentration o iron(III) complex.	f the	
)	The concentration of iron(III) in the solution is $4.66 \times 10^{-3} \text{ mol dm}^{-3}$		
•	Calculate the mass, in mg, of iron in the tablet used to make the 250 cm ³ of solution	on.	
	Mass of iron in the tablet n	ng	
		- - 9	(
		(Total 11 m	nark

2.	represents the energy change to be visible light.	that occurs when a d electron in a	a transition metal
		Excited s	state
	1		

	Excited state
$\Delta E = 2.84 \times 10^{-19} \text{J}$	
	Ground state

(a) Give the equation that relates the energy change ΔE to the Planck constant h and the frequency of the visible light v.

Use this equation and the information in the diagram to calculate a value for the frequency of the visible light, and state the units.

The Planck constant $h = 6.63 \times 10^{-34} \text{ J s.}$

Equation	 	
Calculation	 	

(b)	Explain why this electron transition causes a solution containing the transition metal ion to be coloured.

(2)

(2)

(c)	The energy change shown in the diagram represents the energy of red light and leads to a solution that appears blue.
	Blue light has a higher frequency than red light.

Suggest whether the energy change ΔE will be bigger, smaller or the same for a transition metal ion that forms a red solution. Explain your answer.

Energy chang	e		
Explanation _			
·			

(2)

(d) State **three** different features of transition metal complexes that cause a change in the value of ΔE , the energy change between the ground state and the excited state of the d electrons.

Feature 2

Feature 3 _____

(3)

(Total 9 marks)

You may find the following electrode potential data helpful when answering this question.

3.

Electrode half-equation	E [⊖] / V
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \longrightarrow 2Cr^{3+}(aq) + 7H_2O(I)$	+1.33
$O_2(g) + 4H^+(aq) + 4e^- \longrightarrow 2H_2O(I)$	+1.23
$Cr^{3+}(aq) + e^- \longrightarrow Cr^{2+}(aq)$	-0.44
$Zn^{2+}(aq) + 2e^- \longrightarrow Zn(s)$	-0.76
$Cr^{2+}(aq) + 2e^{-} \longrightarrow Cr(s)$	-0.91

For each colour change, identify the coloured ions responsible and write an equation each reaction that occurs with zinc.	on for
In the equations, you should represent the ions in their simplest form, for example	Cr ³⁺ .
Describe what you would observe when dilute aqueous sodium hydroxide is added dropwise until in excess, to a dilute aqueous solution containing chromium(III) ions	
Write two equations to illustrate your observations.	
In these equations you should give the full formula of each of the complexes, for expression $[Cr(H_2O)_6]^{3+}$.	kample

(c)	When an aqueous solution containing $[Cr(H_2O)_6]^{3+}$ ions is warmed in the presence of Clions, $[Cr(H_2O)_5Cl]^{2+}$ ions are formed and the colour of the solution changes.	
	Name this type of reaction.	
	Suggest, in terms of electrons, why the colours of the complex ions are different.	
		(3)
(d)	The chromium(II) ion $[Cr(H_2O)_6]^{2+}$ has different properties from the $[Cr(H_2O)_6]^{3+}$ ion.	
	Use data from the table above to explain why, in an open container, $[Cr(H_2O)_6]^{2+}$ (aq) ions change into $[Cr(H_2O)_6]^{3+}$ (aq) ions.	
	Suggest the identity of the products formed in each case when sodium carbonate solution is added to separate solutions containing $[Cr(H_2O)_6]^{2+}(aq)$ ions and $[Cr(H_2O)_6]^{3+}(aq)$ ions.	

Explain why the $[Cr(H_2O)_6]^{3+}(aq)$ ions behave differently from the $[Cr(H_2O)_6]^{2+}$	(aq) ions.
n your answer to this part of the question, equations are not required.	
	. <u></u>
	
	
	
	
	
	
	(Total 19 mark

www.accesstuition.com

With reference to electrons, explain why aqueous copper(II) ions are blue.	
By reference to aqueous copper(II) ions, state the meaning of each of the three in the equation $\Delta E = hv$.	terms
Write an equation for the reaction, in aqueous solution, between $[Cu(H_2O)_6]^{2+}$ a excess of chloride ions.	ınd an
State the shape of the complex produced and explain why the shape differs from of the $[Cu(H_2O)_6]^{2+}$ ion.	n that

This question is about copper chemistry.

4.

(a)

(b)		w the structure of the ethanedioate ion $(C_2O_4^{2-})$. lain how this ion is able to act as a ligand.	
	•	3	
			-
			(2
(c)	cont	en a dilute aqueous solution containing ethanedioate ions is added to a solution taining aqueous copper(II) ions, a substitution reaction occurs. In this reaction for molecules are replaced and a new complex is formed.	
	(i)	Write an ionic equation for the reaction. Give the co-ordination number of the c formed and name its shape.	omplex
			(4

(ii)	In the complex formed, the two water molecules are opposite each other.
	Draw a diagram to show how the ethanedioate ions are bonded to a copper ion and
	give a value for one of the O-Cu-O bond angles. You are not required to show the
	water molecules.

(2)

(Total 17 marks)