

A-Level Chemistry

Free Radical Substitution

Mark Scheme

Time available: 59 minutes Marks available: 54 marks

Mark schemes

1. (a) (i) $\mathrm{CH}_{3} \mathrm{Cl}+2 \mathrm{Cl}_{2} \longrightarrow \mathrm{CHCl}_{3}+2 \mathrm{HCl}$

IGNORE state symbols
ALLOW multiples
(ii) (Free-)radical substitution This answer only
(iii) Initiation:
$\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{Cl} \cdot$
Penalise absence of dot once only

1st Propagation step
$\mathrm{Cl} \cdot+\mathrm{CH}_{2} \mathrm{Cl}_{2} \longrightarrow \cdot \mathrm{CHCl}_{2}+\mathrm{HCl}$
Penalise + and/or - charges every time

2nd Propagation step
$\cdot \mathrm{CHCl}_{2}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CHCl}_{3}+\mathrm{Cl} \cdot$
ALLOW • anywhere on $\cdot \mathrm{CHCl}_{2}$ but, if drawn out as a structure, then - must be on C

Termination
$2 \cdot \mathrm{CHCl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{4}$
Mark independently
ALLOW $\cdot \mathrm{CH}_{2} \mathrm{Cl}+\cdot \mathrm{CCl}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{4}$
IGNORE state symbols throughout
(b) (i) $\mathrm{CCIF}_{3} \rightarrow \cdot \mathrm{CF}_{3}+\mathrm{Cl} \cdot$

ALLOW • anywhere on $\cdot \mathrm{CF}_{3}$ unless displayed
(ii) $\mathrm{Cl} \cdot+\mathrm{O}_{3} \rightarrow \mathrm{ClO} \cdot+\mathrm{O}_{2}$

Equations can be in either order
Penalise absence of • once only
$\mathrm{ClO} \cdot+\mathrm{O}_{3} \longrightarrow 2 \mathrm{O}_{2}+\mathrm{Cl} \cdot$
ALLOW • anywhere on $\cdot \mathrm{ClO}$
$\mathrm{NOT} \cdot \mathrm{O}_{3}$
2. (a) (i) \quad Initiation $\mathrm{Br}_{2} \longrightarrow 2 \mathrm{Br} \cdot$

First propagation

$\mathrm{Br} \bullet+\mathrm{CHF}_{3} \longrightarrow{ }^{\longrightarrow} \mathrm{CF}_{3}+\mathrm{HBr}$

Second propagation

$\mathrm{Br}_{2}+\cdot{ }^{-} \mathrm{CF}_{3} \longrightarrow \mathrm{CBrF}_{3}+\mathrm{Br} \cdot$

Termination

$2 \cdot \mathrm{CF}_{3} \longrightarrow \mathrm{C}_{2} \mathrm{~F}_{6} \mathrm{OR} \mathrm{CF}_{3} \mathrm{CF}_{3}$
OR
$2 \mathrm{Br} \cdot \longrightarrow \mathrm{Br}_{2}$
OR
$\mathrm{Br} \bullet+\cdot{ }^{-} \mathrm{CF}_{3} \longrightarrow \mathrm{CBrF}_{3}$
Penalise absence of dot once only
Credit the dot anywhere on the radical
(ii) Ultra-violet / uv / sunlight

OR
$\mathrm{T}>100^{\circ} \mathrm{C}$ OR high temperature
(b) (i)

Displayed formula required with the radical dot on carbon
(ii) (The) $\underline{\mathrm{C}-\mathrm{Br}}$ (bond) breaks more readily / is weaker than (the) $\underline{\mathrm{C}-\mathrm{Cl}}$ (bond) (or converse)
OR
The $\underline{\mathrm{C}-\mathrm{Br}}$ bond enthalpy / bond strength is less than that for $\underline{\mathrm{C}-\mathrm{Cl}}$ (or converse)
Requires a comparison between the two bonds
Give credit for an answer that suggests that the UV frequency / energy may favour $\underline{C-B r}$ bond breakage rather than $\underline{C-C l}$ bond breakage
Ignore correct references either to size, polarity or electronegativity Credit correct answers that refer to, for example "the bond between carbon and bromine requires less energy to break than the bond between carbon and chlorine"
(iii) M1
$\mathrm{Br} \cdot+\mathrm{O}_{3} \longrightarrow \mathrm{BrO}+\mathrm{O}_{2}$

M2

$\mathrm{BrO} \cdot \mathrm{O}_{3} \longrightarrow \mathrm{Br} \cdot+2 \mathrm{O}_{2}$
M1 and M2 could be in either order
Credit the dot anywhere on the radical
Penalise absence of dot once only
Penalise the use of multiples once only

M3 One of the following

They / it / the bromine (atom)

- does not appear in the overall equation
- is regenerated
- is unchanged at the end
- has not been used up
- provides an alternative route / mechanism

3. (a) M1 The (relative) tendency of an atom to attract a pair of electrons/ the electrons/ electron density in a covalent bond

M2 Br is more electronegative than C (or vice versa)

M3 So Br is δ - and C is $\delta+$
(b)

M4 Penalise loss of H^{+}using Br
Allow $S_{n} 1$
(c) M1

Allow + outside square brackets

M2 Use: (Hair) conditioner / (Cationic) surfactant / disinfectant
Allow fabric softener
4. (a)

M1 arrow from lone pair on C of CN^{-}to the C of the CH_{2} group
M2 arrow from the $\mathrm{C}-\mathrm{Br}$ bond to the Br
All arrows are double-headed. Penalise one mark from the total for 2.1 if half headed arrows are used.
Do not penalise the "correct" use of "sticks"
Penalise only once in mechanism for a line and two dots to show a bond
Allow the minus sign to be anywhere on the CN^{-}ion
M2 penalise formal charges or incorrect partial charges on $\mathrm{C}-\mathrm{Br}$ bond
SN1: allow SN1 mechanism with M1 for breakage of $\mathrm{C}-\mathrm{Br}$ bond and M2
for attack by CN^{-}on correct carbocation
Max 1 of 2 marks for wrong organic reactant
Ignore wrong organic product (if shown)

Extra arrows or incorrect covalent bonds:

Penalise the mark for breaking of $\mathrm{C}-\mathrm{Br}$ bond for any extra arrows involving Br or covalent bond in KBr
Penalise the mark for attack by CN^{-}for any extra arrows involving CN or covalent bond in KCN
(b) propanenitrile

Ignore any gaps, hyphens, commas
Allow propane-1-nitrile
(c)

M1 $\frac{55(.0)}{108.9+65.1}(\times 100)$ or $\frac{55(.0)}{174(.0)}(\times 100)$ or $\frac{55(.0)}{55(.0)+119(.0)}(\times 100)$

M2 31.6(\%) (must be 3sf)
1
31.6 scores 2 marks; 32 scores 1 mark no ECF
5. (a) 3-bromo-(2)-methylpropan-1-ol ONLY

3 and 1 are essential, 2 may be omitted, but any other number here is wrong
Ignore hyphens and commas
(b) Bromine is more electronegative than carbon

Allow difference in electronegativity if polarity of bond shown

C is partially positive / electron deficient
M2 and M3 can be awarded from diagram that shows nucleophilic attack

Lone/electron pair (on the nucleophile) donated to the partially positive carbon Allow lone pair attracted to / attacks the partially positive carbon
(c)

Must be displayed with all bonds shown
(d)

Not need be displayed
See General Marking instructions section 3.12 for penalties for incorrectly drawn bonds such as $\mathrm{C}-\mathrm{HO}$ or $\mathrm{C}-\mathrm{NC}$ etc.

KCN \& (dil) acid
Allow

Ignore alcoholic solvents
Penalise conc. $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}$ or any HNO_{3}
(a) M1 nucleophilic substitution

Penalise M3 for formal charge on C and/or Br of C - Br or incorrect partial charges on $\mathrm{C}-\mathrm{Br}$
Max 1 out of 2 for M2 \& M3 for incorrect reactant or product (ignore poorly drawn bond from C to OH group in product if shown)
For SN^{2}
penalise M2 for any additional arrow(s) on NaOH penalise M3 for any additional arrow(s) to/from the Br to/from anything else

If SN^{1} mechanism given (loss of Br first followed by attack by OH^{-}) then:
M2 curly arrow from $\mathrm{C}-\mathrm{Br}$ bond to the Br
 correct carbocation
penalise M2 for any additional arrow(s) to/from the Br to/from anything else
penalise M3 for any additional arrow(s) on NaOH
If curly arrows represent an attempt at an elimination mechanism, cannot score M2 or M3
(b) M1 Amount 1-bromo-2-methylpropane

$$
(=(2 \times 1.26) / 136.9=2.52 / 136.9)=0.0184 \mathrm{~mol}
$$

Correct answer scores 3 marks; answer to at least 2sf and any individual marks for M1/2 should be at least 2sf; answers that are a factor of 10^{x} out score 2;

M2 mass of 2-methylpropan-1-ol expected $(=0.0184 \times 74.0)=1.36 \mathrm{~g}$

Allow ECF through the question

M3 $\%$ yield $=100 \times(0.895 / 1.36)=65.7 \%(65-67 \%)$
Alternative method:

M2 amount of 2-methylpropan-1-ol produced
$=0.895 / 74.0=0.0121 \mathrm{~mol}$
M3 \% yield $=100 \times(0.0121 / 0.0184)=65.7 \%(65-67 \%)$
Allow 2 marks for 82.7-83\% (comes from starting with 2 g not 2.52 g), with answers that are a factor of 10^{x} out from this scoring 1
(c) M1 methylpropene

M1 Do not allow any names with numbers for the position of the double bond. Allow 2-methylpropene but no other answer
Ignore any drawn mechanism

M2 elimination
M2 allow base (or basic) elimination but no other answer
7. (a) (Compounds with the) same molecular formula but different structural / displayed / skeletal formula
(b) (basic) elimination

Mechanism points:
Correct arrow from lone pair on : OH^{-}to H on C adjacent to $\mathrm{C}-\mathrm{Br}$

Correct arrow from $\mathrm{C}-\mathrm{H}$ bond to $\mathrm{C}-\mathrm{C}$

Correct arrow from $\mathrm{C}-\mathrm{Br}$ bond to Br

OR

