

A-Level Chemistry

Fundamental Particles

Question Paper

Time available: 50 minutes Marks available: 47 marks

www.accesstuition.com

whe	n the e	existence of energy leve	els and sub-levels was i	ecognised.	
(a)	Com	plete the following table	for the particles in the	nucleus.	
		Particle	Relative charge	Relative mass	
		proton			
		neutron			
b)	State	e the block in the Period	ic Table to which the el	ement tungsten, W, be	longs.
c)	Isoto	pes of tungsten include	¹⁸² W and ¹⁸⁶ W		
	(i)	Deduce the number of	protons in ¹⁸² W		
	(ii)	Deduce the number of	neutrons in ¹⁸⁶ W		
d)		der to detect the isotope sotopes must be vaporis	•	nass spectrometer, a s	ample containing
	(i)	Give two reasons why	the sample must be io	nised.	
		1			
		2			
	(ii)	State what can be adjudifferent isotopes to be	usted in the mass spected directed onto the dete		formed by the

In 1913 Niels Bohr proposed a model of the atom with a central nucleus, made up of protons and

neutrons, around which electrons moved in orbits. After further research, the model was refined

1.

	Difference					
	Explanation					
(f)	The table below gives the re sample of tungsten.	lative abun	dance of ea	ch isotope in	the mass sp	ectrum of a
	m/z	182	183	184	186	
	Relative abundance /%	26.4	14.3	30.7	28.6	
sub-	ne model of atomic structure, t -levels. Define the term <i>atomic numi</i>	he atom ha				(Total 12
sub- (a)	-levels.	he atom ha	as a nucleus	surrounded	by electrons	(Total 12
	levels. Define the term atomic numle	the atom haber.	as a nucleus nave differer	surrounded	by electrons	(Total 12
sub- (a) (b)	Define the term <i>atomic numl</i> Explain why atoms of an ele	the atom haber.	as a nucleus nave differer	surrounded	by electrons	(Total 12

		es.
(ii)	Define the term <i>relative atomic mass</i> .	
(iii)	Calculate the relative atomic mass of this sample of krypton.	
Give	e the complete electronic configuration of krypton in terms of s, p and d sub-levels.	
In 1	963, krypton was found to react with fluorine. State why this discovery was unexpe	ected.
	963, krypton was found to react with fluorine. State why this discovery was unexpendent of a suitable model of atomic structure to explain the following experimental ervations.	ected.
	a suitable model of atomic structure to explain the following experimental	ected.
Use	a suitable model of atomic structure to explain the following experimental ervations.	

(a)	Complete the following table.

3.

Particle	Relative charge	Relative mass
Proton		
Neutron		
Electron		

	atom of element Z has two more protons and two more neutrons than an atom of a the symbol, including mass number and atomic number, for this atom of Z .
Con	nplete the electronic configurations for the sulphur atom, S, and the sulphide ion, S
S	1s ²
S ²⁻	1s ²
	re the block in the Periodic Table in which sulphur is placed and explain your answ
Bloc	
Bloc Exp Sod	ck
Bloc Exp Sod	ium sulphide, Na ₂ S, is a high melting point solid which conducts electricity when
Bloc Exp Sod molt	ium sulphide, Na ₂ S, is a high melting point solid which conducts electricity when ten. Carbon disulphide, CS ₂ , is a liquid which does not conduct electricity.
Bloc Exp Sod molt	ium sulphide, Na ₂ S, is a high melting point solid which conducts electricity when ten. Carbon disulphide, CS ₂ , is a liquid which does not conduct electricity. Deduce the type of bonding present in Na ₂ S and that present in CS ₂

(iii)	Draw a diagram, including all the outer electrons, to represent the bonding present in ${\sf CS}_2$
(iv)	When heated with steam, CS ₂ reacts to form hydrogen sulphide, H ₂ S, and carbon
	dioxide. Write an equation for this reaction.
	·
	(7) (Total 16 narks)
auoc	
ques	tion is about atomic structure.
The	figure below is a model proposed by Rutherford to show the structure of an atom.
	Positive nucleus
	Negative electron
Stat	e two features of the current model that are not shown in the Rutherford model.
Fea	ture 1 of the current model
Fea	ture 2 of the current model
	(2)

This

(a)

4.

(b) A sample of tin is analysed in a time of flight mass spectrometer. The sample is ionised by electron impact to form 1+ ions.

The table below shows data about the four peaks in this spectrum.

m/z	Percentage abundance
112	22.41
114	11.78
117	34.97
120	To be determined

Give the symbol, including mass number, of the ion that reaches the detector first.

Calculate the relative atomic mass of tin in this sample. Give your answer to 1 decimal place.

Symbol of ion	

Relative atomic mass _____

(4)

(Total 6 marks)