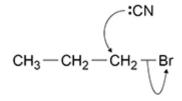


A-Level Chemistry Halogenoalkanes (Multiple Choice) Question Paper


Time available: 32 minutes Marks available: 30 marks

www.accesstuition.com

The question below refers to the reaction of 1-bromopropane with a solution of potassium cyanide in aqueous ethanol.

Which is the correct mechanism for the reaction?

Α

0

В

0

C

0

D

0

(Total 1 mark)

2.

The question below refers to the reaction of 1-bromopropane with a solution of potassium cyanide in aqueous ethanol.

What is the organic product of this reaction?

A propylamine

0

B butylamine

0

C propanenitrile

0

D butanenitrile

0

3.		ch compound is not formed by reacting 3-bromo-3-methylhexane with warm, ethanolic ssium hydroxide?			
	Α	2-ethylpent-1-ene	0		
	В	3-methylhex-1-ene	0		
	С	3-methylhex-2-ene	0		
	D	3-methylhex-3-ene	0		
					(Total 1 mark)
4.	Whic	h statement is not correct about ozone?			
	Α	It absorbs harmful ultraviolet radiation in	0		
	В	Its decomposition is catalysed by chlorine molecules.			
	С	It decomposes to form oxygen.		0	
	D	Ozone holes are regions of the upper atmosphere where there is a reduced concentration of ozone.			
					(Total 1 mark)
5.	Whic	Which compound can react with ammonia to produce propylamine?			
	Α	CH ₃ CH=CH ₂	0		
	В	CH ₃ CH ₂ CH ₂ OH	0		
	С	CH ₃ CH ₂ CH ₂ Br	0		
	D	CH ₃ CH ₂ CH ₃	0		
					(Total 1 mark)

6.		Which compound could not be produced by reacting 2-bromo-3-methylbutane with sodium hydroxide?					
	A	2-methylbut-1-en	ne	0			
	В	3-methylbut-1-en	ne	0			
	С	2-methylbut-2-en	ne	0			
	D	3-methylbutan-2-	-ol	0			
7.	A possible synthesis of a compound found in jasmine flower oil is shown					(Total 1 mark)	
		$\bigcirc \!$	Cl →		OH O	0	
	Which mechanism is not used in this synthesis?						
	A	Electrophilic subs	stitution		0		
	В	Nucleophilic subs	stitution		0		
	С	Free-radical subs	stitution		0		
	D	Nucleophilic addi	ition-elimination		0		
8.	(Total 1 ma					(Total 1 mark)	
	Α	BH_3	0				
	В	NH ₄ ⁺	0				
	С	PH ₃	0				
	D	SiH ₄	0				
						(Total 1 mark)	

g	Which of the following mechanisms of	does not occur in reactions	of bromoethane?
Q			

- A Electrophilic addition
- B Elimination
- C Nucleophilic substitution
- D Radical substitution

(Total 1 mark)

10. Which compound has the fastest rate of reaction with potassium cyanide to form pentanenitrile?

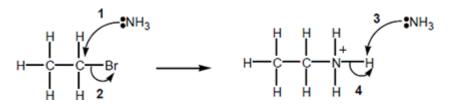
- A 1-bromobutane
- B 1-chlorobutane
- C 1-fluorobutane
- D 1-iodobutane

(Total 1 mark)

11. Which of the arrows, labelled A, B, C or D in the mechanism in the diagram, is **not** correct?

- Α Ο
- в
- c o
- D O

Why are fluoroalkanes unreactive?


- A Fluorine is highly electronegative.
- **B** The F⁻ ion is very stable.
- C They are polar molecules.
- **D** The C–F bond is very strong.

(Total 1 mark)

13.

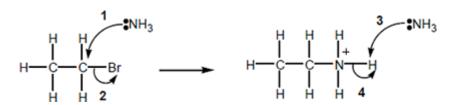
This question is about a method that can be used to prepare ethylamine.

$$CH_3CH_2Br + 2NH_3 \longrightarrow CH_3CH_2NH_2 + NH_4Br$$

Which statement about the reaction is **not** correct?

A Ethylamine is a primary amine.

0


- B The mechanism is a nucleophilic substitution.
- 0
- **C** Using an excess of bromoethane will prevent further reaction to form a mixture of amine products.
- 0

D Ammonium bromide is an ionic compound.

0

This question is about a method that can be used to prepare ethylamine.

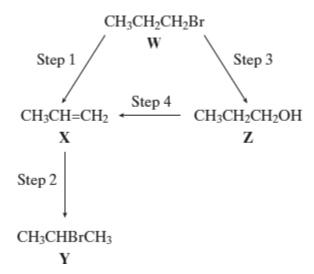
$$CH_3CH_2Br + 2NH_3 \longrightarrow CH_3CH_2NH_2 + NH_4Br$$

Which of the curly arrows in the mechanism is **not** correct?

- **A** 1
- **B** 2
- **c** 3
- D 4

(Total 1 mark)

How many different alkenes are formed when 2-bromo-3-methylbutane reacts with ethanolic potassium hydroxide?


- **A** 2
- **B** 3
- **C** 4
- **D** 5

Which of the following is a correct mechanism for the formation of 2-methylbut-2-ene from 2-bromo-3-methylbutane?

(Total 1 mark)

- Which one of the following statements explains best why fluoroalkanes are the least reactive haloalkanes?
 - A Fluorine is much more electronegative than carbon.
 - **B** The F⁻ ion is the most stable halide ion.
 - **C** The C–F bond is the most polar carbon–halogen bond.
 - **D** The C–F bond is the strongest carbon–halogen bond.

For this question refer to the reaction scheme below.

Which one of the following statements is **not** correct?

- A Reaction of **W** with sodium cyanide followed by hydrolysis of the resulting product gives propanoic acid.
- **B** Mild oxidation of **Z** produces a compound that reacts with Tollens' reagent, forming a silver mirror.
- **C Z** reacts with ethanoic acid to produce the ester propyl ethanoate.
- **D W** undergoes addition polymerisation to form poly(propene).

(Total 1 mark)

- How many different alkenes are formed when 2-bromo-2-methylbutane reacts with ethanolic potassium hydroxide?
 - **A** 2
 - **B** 3
 - **C** 4
 - **D** 5

(Total 1 mark)

- **20.** Which compound can be dehydrated to form an alkene?
 - A CH₃CHO

0

B CH₃COOH

0

C CH₃CH₂OH

0

D CH₃COOCH₃

0

21.	Whic	ch compound is formed from bromoethane	e in a nucleophilic substitution reaction?		
	Α	CH ₃ CN	0		
	В	CH ₃ CH ₂ NH ₂	0		
	С	CH ₂ =CH ₂	0		
	D	CH ₃ CH ₂ OSO ₂ OH	0		
			(Tot	tal 1 mark)	
22.		n 2-bromobutane is warmed with potassions both occur.	um hydroxide solution, substitution and eliminati	on	
	Wha	t is the role of the hydroxide ions in the el	imination reaction?		
	Α	base	0		
	В	catalyst	0		
	С	electrophile	0		
	D	nucleophile	0		
			(Tot	tal 1 mark)	
23.	When 2-bromobutane is warmed with potassium hydroxide solution, substitution and elimination reactions both occur.				
	Which of these compounds is not produced?				
	Α	butan-1-ol	0		
	В	butan-2-ol	0		
	С	but-1-ene	0		
	D	E-but-2-ene	0		
			(Tot	tal 1 mark)	

24

Which one of the following reactions involves nucleophilic addition?

- A $CH_3CH = CH_2 + HBr \rightarrow CH_3CHBrCH_3$
- **B** $CH_3CH_2CH_3 + Cl_2 \rightarrow CH_3CHCICH_3 + HCl$
- C $CH_3CH_2CH_2Br + NaOH \rightarrow CH_3CH_2CH_2OH + NaBr$
- D CH₃CH₂CHO + HCN → CH₃CH₂CH(OH)CN

(Total 1 mark)

25.

Which one of the following is **not** a suitable method for the preparation of ethanol?

- A oxidation of ethane
- **B** hydration of ethene
- c reduction of ethanal
- **D** hydrolysis of bromoethane

(Total 1 mark)

26.

In which one of the following are the curly arrows **not** used correctly?

$$\mathbf{A} \qquad \bigcirc \qquad \stackrel{\wedge}{\bigcap}_{\mathbf{H-Br}}$$

$$\longrightarrow$$

$$\bigcirc^{\uparrow}$$

В

С

_

Which one of the following can react both by nucleophilic addition and by nucleophilic substitution?

A
$$CH_{3}$$
— C — CH = CH_{2}
O

B $H_{2}C$ — CH_{2} — C
H

C
$$H_2C-CH=CH_2$$

(Total 1 mark)

In which of the following is a curly arrow used incorrectly?

A
$$CH_3CH_2CHCH_3 \longrightarrow CH_3CH_2CHCH_3 + :Br_OH$$

B
$$CH_3CH \stackrel{\longleftarrow}{=} CHCH_3 \longrightarrow CH_3 \stackrel{\longleftarrow}{\subset} HCH_2CH_3 \longrightarrow CH_3CHCH_2CH_3$$

$$:Br^- \qquad Br$$

C
$$CH_3CH_2CCH_3 \longrightarrow CH_3CH_2CCH_3 \longrightarrow CH_3CH_2CCH_3$$
 $H \longrightarrow NH_2$
 $CH_3CH_2CHCH_3 \longrightarrow CH_3CH \longrightarrow CH_3CH = CHCH_3$

C $CH_3CH_2CHCH_3 \longrightarrow CH_3CH \longrightarrow CH_3CH = CHCH_3$

D
$$CH_3CH_2CHCH_3 \longrightarrow CH_3CH \longrightarrow CH_3CH = CHCH_3$$

Which one of the following mechanisms is **not** involved in the reaction sequence below?

$$\mathsf{CH_3CH_3} \to \mathsf{CH_3CH_2CI} \to \mathsf{CH_3CH_2OH} \to \mathsf{CH_2}\text{=}\mathsf{CH_2} \to \mathsf{CH_3CH_2Br}$$

- A electrophilic addition
- **B** electrophilic substitution
- C nucleophilic substitution
- **D** free-radical substitution

(Total 1 mark)

30.

Which one of the following types of reaction mechanism is **not** involved in the above sequence?

$$CH_3CH_2CH_3 \longrightarrow (CH_3)_2CHCI \longrightarrow (CH_3)_2CHCN$$

$$(CH_3)_2CHCH_2NHCOCH_3 \leftarrow (CH_3)_2CHCH_2NH_2$$

- A free-radical substitution
- B nucleophilic substitution
- **C** elimination
- D nucleophilic addition-elimination