

A-Level Chemistry

Hess's Law

Mark Scheme

Time available: 61 minutes Marks available: 58 marks

www.accesstuition.com

Mark schemes

- (a) M1 The enthalpy / heat energy change when 1 mol (of a substance / compound / 1. product) is formed from its (constituent) elements M1 energy change is not sufficient – must refer to enthalpy change or heat energy change 1 M2 with (all) reactants and products / all substances in standard states M2 or with (all) reactants and products / substances in normal states under standard conditions / 100 kPa and any specified temperature (usually 298 K) Ignore reference to 1 atmosphere If enthalpy of combustion given rather than formation, then mark M1 and M2 independently, and M2 could score. 1 $\Delta H = [\text{sum } \Delta_{\text{f}} H \text{ products}] - [\text{sum } \Delta_{\text{f}} H \text{ reactants}]$ (b) M1 or -114 = [3(-130) - 972] - [3X - 339]or 3X = 3(-130) - 972 + 339 + 114-303 scores 3 marks (+303 scores 2 marks) -909 scores 2 marks (+909 scores 1 mark) ignore units 1 3X = -909M2 M2 No ECF from M1 (except +909 or arithmetic error) 1 $X = -303 (kJ mol^{-1})$ М3 **M3** ECF from **M2**, ie **M3** ÷ 3 1
 - (c) M1 provides energy to break (covalent) bond in chlorine / Cl₂ or to form chlorine free radicals

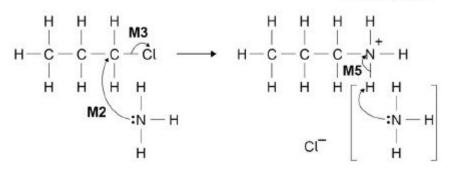
M2
$$CH_3CH_2CH_3 + \bullet CI \rightarrow \bullet CH_2CH_2CH_3 + HCI$$

1

1

 $\textbf{M3} \quad \bullet CH_2CH_2CH_3 + Cl_2 \rightarrow CICH_2CH_2CH_3 + \bullet CI$

M2 and M3:


• must show structure of •CH₂CH₂CH₃ in at least one of the equations to score both marks (dot must be on or around the end CH₂ group), but only penalise •C₃H₇ once across both equations if both equations otherwise correct

 on this occasion, molecular formula of propane can be allowed for M2

• on this occasion, molecular formula of 1-chloropropane can be allowed for **M3**

- penalise absence of radical dots once
- allow equations in either order
- (d) the ability/power of atom to attract/withdraw the <u>2/pair</u> of electrons in a covalent bond allow nucleus in place of atom
- (e) M1 nucleophilic substitution

M4 Structure

M2 curly arrow from lone pair on N of NH₃ to the correct C atom Penalise M2 if negative charge on ammonia

1

1

1

1

M3 must show the movement of a pair of electrons from the C–Cl bond to the Cl atom; mark M3 independently provided it is from <u>their original molecule</u>

Penalise **M3** for formal charge on C and/or Cl of C–Cl or incorrect partial charges on C–Cl; ignore other partial charges on uncharged atoms

Penalise **M3** for any additional arrow(s) to/from the CI to/from anything else

M4 is for the structure of the alkylammonium ion, which could be a condensed formula; a positive charge must be shown on, or close to, the N atom

1

1

M5 is for an arrow from the N–H bond to the N atom

The second molecule of NH_3 is not essential for **M5**, but penalise **M5** if used incorrectly (but only penalise once in **M2** and **M5** for negative charge on ammonia)

<u>SN1 mechanism alternative</u> (loss of CI first followed by attack by NH₃) : **M2** curly arrow from C–CI bond to the CI

M3 curly arrow from lone pair of NH_3 to correct C on the correct carbocation

2.

(a)

M1 moles cyclohexane = $\frac{192.730 - 192.100}{84(.0)}$ or $\frac{0.630}{84(.0)}$ (= 0.00750) Correct answer scores 4 marks

M2 heat released = 1216 x 1000 x 0.0075 (= 9120) (J) [or 1216 x 0.0075 = (9.12) (kJ)] 0.0075 scores M1 with or without working

9120 or 9.12 scores M1 and M2 with or without working

M3
$$\Delta T \left(=\frac{q}{mc}=\frac{9120}{50(.0)x 4.18}\right) = 43.6$$

Allow ECF at each stage
correct M3 scores M1 and M2

M4 final temperature = 19.1 + **M3** = 62.7 or 63 (°C)

Alternative M3/4

M3 9120 = 50 × 4.18 × (Final T – 19.1)

M4 Final T = 62.7 or 63 (°C)

Ignore negative sign for q in **M2** and/or Δ T in **M3**, but penalise if used as a temperature fall in **M4** (if alternative method used for **M3/4** and negative value for q is used, allow **M3** for expression with negative q value but do not allow **M4**)

(temperatures to at least 2sf)

If candidates use a value in kJ rather than J to find ΔT / final T then they lose **M3**, but ECF to **M4** [e.g. 9.12 rather than 9120 giving $\Delta T = 0.0436$ and final temperature = 19.1(436) – this would give 3 marks] If candidates use 0.63 g for m in **M3**, they will get $\Delta T = 3.46$ and final temperature = 22.56 – this would give 3 marks] Cannot score **M2** using moles = 1 1

1

1

1

1

[14]

 (b) thermal energy / heat loss or or idea of heat being transferred to calorimeter incomplete combustion or allow idea that it is not under standard conditions evaporation allow no lid / poor/no insulation 	
incomplete combustion or allow idea that it is not under standard conditions evaporation allow no lid / poor/no insulation	
allow idea that it is not under standard conditions evaporation allow no lid / poor/no insulation	
allow idea that it is not under standard conditions evaporation allow no lid / poor/no insulation	
allow no lid / poor/no insulation	
allow no lid / poor/no insulation	
(c) M1 6 × (−394), 6 × (−286) and −3920	
(c) wit 0 x (-394), 0 x (-200) and -3920	
M2 $(A \sqcup -)$ [6 × (204)] + [6 × (286)] + 2020	
M2 (Δ H =) [6 × (-394)] + [6 × (-286)] + 3920 (or (Δ H =) [-2364)] + [-1716)] + 3920)	
$(or (\Delta H =) -4080 + 3920)$	
1	
M3 = -160 (kJ mol-1)	
160 secres 2 marks: 1160 secres 2 marks	
–160 scores 3 marks; +160 scores 2 marks –8000 scores 2 marks; +8000 scores 1 mark	
–1876 scores 2 marks; +1876 scores 1 mark	
M1 is for correct coefficients, i.e. $6 \times \Delta_c H H_2 \& 6 \times \Delta_c H$	
C & 1 x $\Delta_c H C_6 H_{12}$ (ignore whether + or –)	
ECF from M1 to M2/3 for incorrect coefficients /	
arithmetic error / transposition	
ECF from M2 to M3 for use of products – reactants	
Ignore any cycle	101
	[8]
(a) $2Fe(s) + \frac{3}{2}O_2(g) \longrightarrow Fe_2O_3(s) ONLY$	
Don't allow multiples. States must be shown	
	1
(b) M1 Correct cycle or equation	
If M1 and M2 not awarded then M3 can be awarded for their M2	
divided by 3	1
M2 $(3 \times \Delta_f HCO_2) = -19 + (-822) + 3(-111) - 0$	
$(3 \times \Delta_f HCO_2) = -1174$	
M3 $\Delta_f HCO_2 = -391 \text{ kJ mol}^{-1}$	1
$\Delta_{\dagger} = -331 \text{ kJ III01}^{\dagger}$	
-317 for 1 more	
−317 for 1 mark +391 for 1 mark	
+391 for 1 mark	1

	(c)	M1 Correct Hess's law cycle or equation If M1 and M2 not awarded then M3 can be awarded for their M2 divided by 6			
		M2	(6(N-H)) = 944 + 3(+436) + 92 (6(N-H)) = 2344 -391 for 1 mark	1	
		M3	N−H = (+)391 kJ mol ^{−1}	1	
			Allow 2 sig fig or more	-	
	(d)		book value derived from (a number of) different compounds (not just different molecules)	1	
					[8]
4.	(a)	$C(s) + 2F_2(g) \longrightarrow CF_4(g)$ State symbols essential			
			1		
	(b)	Arou	nd carbon there are 4 bonding pairs of electrons (and no lone pairs)	1	
		Therefore, these repel equally and spread as far apart as possible	1		
	(c)	∆ <i>H</i> =	$\Sigma \Delta_{\rm f} H$ products – $\Sigma \Delta_{\rm f} H$ reactants or a correct cycle	1	
		Hend	$ce = (2 \times -680) + (6 \times -269) - (x) = -2889$		
				1	
			x = 2889 − 1360 − 1614 = −85 (kJ mo ^{−1})	1	
			Score 1 mark only for +85 (kJ mol ^{-1})		
	(d)	Bond	ds broken = $4(C-H) + 4(F-F) = 4 \times 412 + 4 \times F-F$		
		Bond	$ds formed = 4(C-F) + 4(H-F) = 4 \times 484 + 4 \times 562$ Both required	1	
		-190	$4 = [4 \times 412 + 4(F-F)] - [4 \times 484 + 4 \times 562]$	-	
		4(F–	F) = -1904 - 4 × 412 + [4 × 484 + 4 × 562] = 632	4	
		F–F	= 632 / 4 = 158 (kJ mol ⁻¹)	1	

The student is correct because the F–F bond energy is much less than the C–H or other covalent bonds, therefore the F–F bond is weak / easily broken

Relevant comment comparing to other bonds (Low activation energy needed to break the F–F bond)

1

[10]

5.

(a)

(i) M1 (could be scored by a correct mathematical expression which must have all ΔH symbols and the Σ or SUM)

Correct answer gains full marks

Credit 1 mark ONLY if -122 (kJ mol⁻¹)

M1 $\Delta H = \sum \Delta H_{\rm f} (\text{products}) - \sum \Delta H_{\rm f} (\text{reactants})$

OR a correct cycle of balanced equations

- M2 $\underline{\Delta H} = 3(-394) 3(-111) (-971)$ (This also scores M1)
- M3 = (+) 122(kJ mol⁻¹)

Award 1 mark ONLY for -122

For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (**M1** and **M2**)
- If no AE, check for correct method; this requires either a correct cycle of balanced equations OR a clear statement of **M1** which could be in words and scores <u>M1 only</u>

(ii) By definition

Ignore reference to "standard state"

OR

Because it is an element / elemental

1

3

(b) (i) $TiO_2 + 2CI_2 + 2C \longrightarrow TiCI_4 + 2CO$ Allow multiples

OR

 $TiO_2 + 2CI_2 + C \longrightarrow TiCI_4CO_2$ Ignore state symbols

M1 use of Cl₂ and C

M2 a correct balanced equation

	(ii) TiCl₄ + 4Na → Ti + 4NaCl Allow multiples		
	OR		
	TiCl₄ + 2 Mg → Ti + 2 MgCl ₂ Ignore state symbols		
	M1 use of Na <i>OR</i> Mg		
	M2 a correct balanced equation		2
(c)) (i) 4 FeCr ₂ O ₄ + 8 Na ₂ CO ₃ + 7 O ₂ \longrightarrow 8 Na ₂ CrO ₄ + 2Fe ₂ O ₃ Allow multiples	+ 8CO ₂	
	Ignore state symbols		1
	(ii) $Cr_2O_3 + 2AI \longrightarrow Al_2O_3 + 2Cr$		
	Allow multiples Ignore state symbols		
	Ignore state symbols		1
			[10]
(a)) They are elements (1)		
	Ignore irrelevant comments	1	
(1.)		1	
(b)) Enthalpy <u>change</u> (1) or heat energy change or heat change or ΔH or any n enthalpy change C.E. if change not mentioned	amed	
	Independent of route (1)		
	OR depends on initial and final <u>states</u> Only give second mark if first mark awarded except al used instead of enthalpy	llow if energy	
		2	
(c)	= $2 \times -242 + \frac{1}{2} \times -394 - (-365)$ (1) (also implies first mark)		
	= -316 kJ mol ⁻¹ (1)	3	
	Ignore no units penalise wrong units	3	
	+316 scores 1/3		
			[6]

6.

[6]