

A-Level Chemistry

Hess's Law

Question Paper

Time available: 61 minutes Marks available: 58 marks

www.accesstuition.com

Γhe equation for a rea	ction used to manu	ıfacture 1-chloropropa	ine is	
3 CH₃CH₂C	CH2OH(I) + PCI3(I) -	\rightarrow 3 CH ₃ CH ₂ CH ₂ CI(I)	+ H ₃ PO ₃ (s)	
The enthalpy change f			0 0()	
The table contains son	ne standard enthal	py of formation data.		
Substance	PCI ₃ (I)	CH ₃ CH ₂ CH ₂ CI(I)	H ₃ PO ₃ (s)	
∆f <i>H</i> ^e / kJ mol ^{−1}	-339	-130	-972	
Calculate a value for the change for the reaction		•	pan-1-ol using the e	enthalpy

1.

(3)

(c)	1-chloropropane can also be produced by the reaction between propane and chlorine in the presence of ultraviolet light.	
	State why ultraviolet light is needed for this reaction to occur.	
	Give an equation for each propagation step in the formation of 1-chloropropane from propane.	
	Why ultraviolet light is needed	
	Propagation step 1	
	Propagation step 2	
		(;
(d)	The C–Cl bond in 1-chloropropane is polar because carbon and chlorine have different electronegativities.	
	Define the term electronegativity.	
		(

Name and outline the mechanism for this reaction.
Name of mechanism
Outline of mechanism

Ammonia reacts with 1-chloropropane to form propylamine.

(e)

(5) (Total 14 marks) 2.

This question is about enthalpy changes.

(a) A student determined the enthalpy of combustion of cyclohexane (C_6H_{12}).

The student

- placed a pure sample of cyclohexane in a spirit burner
- placed the spirit burner under a beaker containing 50.0 g of water and ignited the cyclohexane
- extinguished the flame after a few minutes.

The results for the experiment are shown in **Table 1**.

Table 1

Initial temperature of the water / °C	19.1
Initial mass of spirit burner and cyclohexane / g	192.730
Final mass of spirit burner and cyclohexane / g	192.100

The student determined from this experiment that the enthalpy of combustion of cyclohexane is $-1216 \text{ kJ} \text{ mol}^{-1}$

Use the data to calculate the final temperature of the water in this experiment.

The specific heat capacity of water = $4.18 \text{ J K}^{-1} \text{ g}^{-1}$

The relative molecular mass (M_r) of cyclohexane = 84.0

•	4	
•	лι	
	41	

)	A data book value for the enthalpy of combustion of cyclohexane is –3920 kJ mol ⁻¹ The student concluded that the temperature rise recorded in the experiment was smalle	r
	than it should have been.	
	Suggest a practical reason for this.	

(c) **Table 2** gives some values of standard enthalpies of combustion ($\Delta_{\mathbb{C}}H^{\Theta}$).

Table 2

Substance	C(s)	H ₂ (g)	C ₆ H ₁₂ (I)
Standard enthalpy of combustion, $\Delta_{\mathbf{C}} H^{\mathbf{G}}$ / kJ mol ⁻¹	-394	-286	-3920

Use the data in **Table 2** to calculate the enthalpy change for the reaction represented by this equation

6 C(s) + 6
$$H_2(g) \rightarrow C_6H_{12}(I)$$

Enthalpy change	kJ mol ⁻¹

(3)

(Total 8 marks)

3. This question is about energetics.

(a) Write an equation, including state symbols, for the reaction with an enthalpy change equal to the enthalpy of formation for iron(III) oxide.

(1)

(b) **Table 1** contains some standard enthalpy of formation data.

Table 1

	CO(g)	Fe ₂ O ₃ (s)
Δ _f H ^e / kJ mol ⁻¹	-111	-822

$$Fe_2O_3(s) + 3CO(g) \longrightarrow 2Fe(s) + 3CO_2(g)$$

$$\Delta H = -19 \text{ kJ mol}^{-1}$$

Use these data and the equation for the reaction of iron(III) oxide with carbon monoxide to calculate a value for the standard enthalpy of formation for carbon dioxide.

Show your working.

$\Delta_f H^{\Theta}$	 kJ mol	-1
$\Delta_{f}H^{\sim}$	_ KJ MC)

(3)

(c) Some enthalpy data are given in **Table 2**.

Table 2

Process	ΔH / kJ mol ^{−1}
$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$	-92
$N_2(g) \longrightarrow 2N(g)$	+944
$H_2(g) \longrightarrow 2H(g)$	+436

Use the data from **Table 2** to calculate the bond enthalpy for N-H in ammonia.

1 (3)	N−H bond enthalpy kJ mol ⁻¹	
	Give one reason why the bond enthalpy that you calculated in part (c) is different from mean bond enthalpy quoted in a data book (388 kJ mol ⁻¹).	(d)
-		
– (1) Total 8 marks)	т)	
	Write an equation, including state symbols, for the reaction with enthalpy change equal to the standard enthalpy of formation for ${\sf CF_4}(g)$.	4. (a)
- (1)		

ГаЫе 1 g	gives some values of sta			ation (Δ _f H ^Θ).	
		Table			1
	Substance Δ _f H ^Θ / kJ mol ⁻¹	F ₂ (g)	CF ₄ (g) -680	HF(g) -269	
Γhe enth	alpy change for the follo	owing reaction	n is −2889 k	J mol ⁻¹ .	I
	$C_2H_6(g) + 7$ value and the standard of formation of $C_2H_6(g)$.	enthalpies o			calculate the standard
Star	ndard enthalpy of forma	tion of C_2H_6	(g) =		kJ mol ⁻¹

(d) Methane reacts violently with fluorine according to the following equation.

$$CH_4(g) + 4F_2(g) \longrightarrow CF_4(g) + 4HF(g) \Delta H = -1904 \text{ kJ mol}^{-1}$$

Some mean bond enthalpies are given in Table 2.

Table 2

Bond	C-H	C-F	H-F
Mean bond enthalpy / kJ mol⁻¹	412	484	562

A student suggested that one reason for the high reactivity of fluorine is a weak F-F bond.

Is the student correct? Justify your answer with a calculation using these data.

(4)

(Total 10 marks)

- **5.** This question is about the extraction of metals.
 - (a) Manganese can be extracted from Mn₂O₃ by reduction with carbon monoxide at high temperature.
 - (i) Use the standard enthalpy of formation data from the table and the equation for the extraction of manganese to calculate a value for the standard enthalpy change of this extraction.

	Mn ₂ O ₃ (s)	CO(g)	Mn(s)	CO ₂ (g)
$\Delta H_{\rm f}^{\Theta}$ / kJ mol ⁻¹	-971	-111	0	-394

$$Mn_2O_3(s) + 3CO(g) \longrightarrow 2Mn(s) + 3CO_2(g)$$

(ii) State why the value for the standard enthalpy of formation of Mn(s) is zero.

- (b) Titanium is extracted in industry from titanium(IV) oxide in a two-stage process.
 - (i) Write an equation for the first stage of this extraction in which titanium(IV) oxide is converted into titanium(IV) chloride.

(ii) Write an equation for the second stage of this extraction in which titanium(IV) chloride is converted into titanium.

(3)

(1)

(2)

(2)

	•	ation for this r		1	No CrO	250 0 1 200
	FeCr ₂ C	J ₄ +Na₂	2CO ₃ +	J ₂	Na ₂ CrO ₄ +	- 2Fe ₂ O ₃ + 8CO ₂
(ii) In the fi	nal stage, chr	omium is extra	acted from Cr ₂	O ₃ by reducti	on with aluminium.
	Write a	n equation for	this reaction.			
						(Total 10
The tab	le below co	ntains some s	tandard entha	alpy of formation	on data.	
Substa	ance	C(s)	N ₂ (g)	H ₂ O(g)	CO ₂ (g)	NH ₄ NO ₃ (s)
$\Delta H_{\rm f}^{\bullet}$	kJ mol ⁻¹	0	0	-242	-394	-365
_	tate Hess's I		standard enth	alpy of formation	on for carbon	and nitrogen zero?
_			standard enth	alpy of formation	on for carbon	and nitrogen zero?
_			standard enth	alpy of formation	on for carbon	and nitrogen zero?
(b) St	tate Hess's I	_aw.				and nitrogen zero?
(b) St ————————————————————————————————————	eate Hess's I	_aw. ta from the tal	ole to calculat		ne enthalpy c	
(b) St ————————————————————————————————————	eate Hess's I	_aw. ta from the tal	ole to calculat	e a value for th	ne enthalpy c	