

A-Level Chemistry

Hydrogen NMR

Mark Scheme

Time available: 62 minutes Marks available: 59 marks

www.accesstuition.com

Mark schemes

1.	(a)	Tick in carbonyl box only	1	
	(b)	Peak at 2220-2260 cm ⁻¹ (for C≡N) disappears		
		If both C≡N disappears and N-H appears without wavenumbers scores 1		
			M1	
		Peak at 3300-3500 cm ⁻¹ (for N-H) appears	МЭ	
		Eingerprint region different	1012	
		ringerprint region different	M3	
	(c)	Integration ratio 2:2:3		
		If no link between delta value and oxygen and chlorine, then can award 1 mark for correct explanation of splitting of all 3 peaks		
			M1	
		Peak at 3.95 triplet (integration 2) CI-CH ₂ next to CH ₂	M2	
		Peak at 3.65 triplet (integration 2) O-CH ₂ next to CH ₂	17.2	
		If no explanation of splitting, then can award 1 mark for 3 correct links between delta value and oxygen and chlorine M1		
			M3	
		Peak at 3.35 singlet (integration 3) O-CH $_3$ no adjacent H	244	
			M4	
			M5	
				[9]

(c)	(Isomer T)	
	signals due to OH (alcohol) at 3230–3350 <u>and</u> C=O at 1680–1750	1
	OH and C=O (functional groups) separated in molecule. Allow not a carboxylic acid.	1
	(Isomer U)	
	(only) signal for OH (alcohol) at 3230–3350	1
	2 × OH groups present / diol / OH & cyclo(ether) structure. Allow OH but not C=O.	1
	(Isomer V)	
	signals due to OH (acid) at 2500-3000 (and C=O at 1680-1750)	
	carboxylic acid group / -COOH present.	1 1
(d)	2:2:2:3:3 Any order.	1
(e)	(The quartet at δ =3.5 is for a CH ₂ group) next to $-\mathbf{O}-\mathbf{CH}_2$ OR shifted significantly downfier by electronegative O	eld 1
	(is a quartet) because of an adjacent CH_3 group / couple with 3 adjacent protons	1
	(singlet at δ =2.2 is for a CH ₃ group) attached to $-C - CH_3$ OR shifted downfield by electronegative C=O	1
	(is a singlet) because there are no adjacent protons / no coupling.	1

$$CH_3 - CH_2 - O - CH_2 - CH_2 - CH_2 - CH_3$$

Allow 1 mark for:
 $CH_3 - O - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$

2	
	[17]

1

1

3.

(a) M1

(b)

Ester 1 If Ester 2, can score M3 only.

M2 peak at
$$\delta = 4.1$$
 due to $(\mathbf{R}) = -\mathbf{C} - \mathbf{C} - \mathbf{C} + \mathbf{C} - \mathbf{C} - \mathbf{C} + \mathbf{C} + \mathbf{C} - \mathbf{C} + \mathbf{C}$

When marking M2 and M3, check any annotation of structures in the stem at the top of the page.

М3	(δ = 4.1 peak is) quartet as <u>adjacent / next to / attached to CH₃</u>	1
M4	Other spectrum quartet at δ = 2.1-2.6 (or value in this range)	1
M1	Quaternary (alkyl) ammonium salt / bromide	1
M2	CH ₃ Br or bromomethane Penalise contradictory formula and name.	1
МЗ	Excess (CH_3Br or bromomethane) Mention of acid eg H_2SO_4 OR alkali eg NaOH loses both M2 and M3.	1
M4	Nucleophilic substitution Can only score M3 if reagent correct.	

Ignore alcohol or ethanol (conditions) or Temp.

1

(c)		
(0)	Bromine	Acidified KMnO ₄
	(penalise Br but mark on)	(Penalise missing acid but mark on)

Wrong reagent = no marks.

If bromine colour stated it must be red, yellow, orange, brown or any combination, penalise wrong starting colour.

Benzene	no reaction / colour remains / no	no reaction / colour remains / no (visible)
	(visible) change	change

Ignore 'clear', 'nothing'.

Allow colour fades slowly.

Allow 'nvc' for no visible change.

cyclohexene	(Bromine) decolourised	(Acidified KMnO ₄) decolourised
-------------	---------------------------	--

4.

(a)

Penalize $-O_2N$ once Penalise missing circle once Don't penalise attempt at bonding in NO $_2$

1

1

1

1

1

[11]

(b)

If **both H** and **J** correct but reversed, award one mark

A carbon in saturated ring structures should be shown as

(c)

1

(d)

Allow C_2H_5 but NOT allow C_4H_9 or C_3H_7

1 1

[8]

(b) (i) 2.6

Ignore any group on RHS Must clearly indicate relevant **two** H on a C next to C=O

On LHS, penalise H or CH or CH₂ or CH₃ Ignore missing trailing bonds or attached R groups

(ii) 2.2

СН₃-С----Ш О

Ignore all groups on RHS Must clearly indicate relevant **three** H on C next to C=O

Ignore missing trailing bonds or attached R group

(iii) 1.2

Or in words: two <u>equivalent</u> CH₃ groups Must clearly indicate two <u>equivalent</u> methyl groups.

Penalise attached H

Ignore missing trailing bonds or attached R groups

(iv)

(a) (i)

 $H_3C - C$ \square \bigcirc or RCOCH₃; (or description in words) (ignore trailing bonds) 1

1

1

1

1

[5]

- (ii) H_3C Oor ROCH₃; (allow 1 if both (i) and (ii) give CH₃- or H₃C– only)
- (iii) CH₂CH₂ or two <u>adjacent</u> methylene groups;

OR

CH₃COCH₂CH₂OCH₃;

(b) (i) OH <u>in acids</u> or (carboxylic) acid present

(ii)
$$CH_3$$

 $CH_3 - C - COOH$
 $CH_3 - C - COOH$

(c)

reagent	K ₂ Cr ₂ O ₇ /H ⁺	KMnO₄ /H⁺
Y	no reaction	no reaction
Z	orange to green or turns green	purple to colourless or turns colourless

[9]

1

1

1