

A-Level Chemistry

 Hydrogen NMR

 Hydrogen NMR}

Mark Scheme

Time available: 62 minutes Marks available: 59 marks

Mark schemes

1. (a) Tick in carbonyl box only
(b) Peak at 2220-2260 cm^{-1} (for $\mathrm{C} \equiv \mathrm{N}$) disappears

If both $\mathrm{C} \equiv N$ disappears and $\mathrm{N}-\mathrm{H}$ appears without wavenumbers scores 1

Peak at 3300-3500 cm^{-1} (for $\mathrm{N}-\mathrm{H}$) appears

Fingerprint region different
(c) Integration ratio 2:2:3

If no link between delta value and oxygen and chlorine, then can award 1 mark for correct explanation of splitting of all 3 peaks

Peak at 3.95 triplet (integration 2) $\mathrm{Cl}-\mathrm{CH}_{2}$ next to CH_{2}

Peak at 3.65 triplet (integration 2) $\mathrm{O}-\mathrm{CH}_{2}$ next to CH_{2}
If no explanation of splitting, then can award 1 mark for 3 correct links between delta value and oxygen and chlorine M1

Peak at 3.35 singlet (integration 3) $\mathrm{O}-\mathrm{CH}_{3}$ no adjacent H

Structure $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
2. (a)

$1 \times$ AO1
(b) S

R

Q
(c) (Isomer T)
signals due to OH (alcohol) at 3230-3350 and $\mathrm{C}=\mathrm{O}$ at 1680-1750

OH and $\mathrm{C}=\mathrm{O}$ (functional groups) separated in molecule. Allow not a carboxylic acid.
(Isomer U)
(only) signal for OH (alcohol) at 3230-3350
$2 \times \mathrm{OH}$ groups present / diol / OH \& cyclo(ether) structure.
Allow OH but not $\mathrm{C}=\mathrm{O}$.
(Isomer V)
signals due to OH (acid) at 2500-3000 (and C=O at 1680-1750)
carboxylic acid group / -COOH present.
(d) 2:2:2:3:3

Any order.

(e) (The quartet at $\delta=3.5$ is for a CH_{2} group) next to $-\mathbf{O}-\mathbf{C H}_{2}$ OR shifted significantly downfield by electronegative O
(is a singlet) because there are no adjacent protons / no coupling.
(f)

Allow 1 mark for:

3. (a) M1 Ester 1

If Ester 2, can score M3 only.

M2 peak at $\delta=4.1$ due to

When marking M2 and M3, check any annotation of structures in the stem at the top of the page.

M3 ($\delta=4.1$ peak is) quartet as adjacent / next to / attached to CH_{3}

M4 Other spectrum quartet at $\delta=2.1-2.6$ (or value in this range)
(b) M1 Quaternary (alkyl) ammonium salt / bromide

M2 $\quad \mathrm{CH}_{3} \mathrm{Br}$ or bromomethane Penalise contradictory formula and name.

M3 Excess ($\mathrm{CH}_{3} \mathrm{Br}$ or bromomethane)
Mention of acid eg $\mathrm{H}_{2} \mathrm{SO}_{4}$ OR alkali eg NaOH loses both M2 and M3.

M4 Nucleophilic substitution
Can only score M3 if reagent correct.
Ignore alcohol or ethanol (conditions) or Temp.
(c)

	Bromine (penalise Br but mark on)	Acidified KMnO_{4} (Penalise missing acid but mark on)

Wrong reagent = no marks.
If bromine colour stated it must be red, yellow, orange, brown or any combination, penalise wrong starting colour.

Benzene	no reaction / colour remains / no (visible) change	no reaction / colour remains / no (visible) change

Ignore 'clear', 'nothing'.
Allow colour fades slowly.
Allow 'nvc' for no visible change.
[11]
$4 . \quad(\mathrm{a})$

P	\mathbf{G}

Penalize $-\mathrm{O}_{2} \mathrm{~N}$ once
Penalise missing circle once
Don't penalise attempt at bonding in NO_{2}
(b)

\mathbf{H}	J

If both \boldsymbol{H} and \mathbf{J} correct but reversed, award one mark

A carbon in saturated ring structures should be shown as

(c)

(d)

Allow $\mathrm{C}_{2} \mathrm{H}_{5}$ but NOT allow $\mathrm{C}_{4} \mathrm{H}_{9}$ or $\mathrm{C}_{3} \mathrm{H}_{7}$
5. (a) OH alcohols
(b) (i) 2.6

Ignore any group on RHS
Must clearly indicate relevant two H on a C next to $C=O$
On LHS, penalise H or CH or CH_{2} or CH_{3}
Ignore missing trailing bonds or attached R groups
1
(ii) 2.2

Ignore all groups on RHS
Must clearly indicate relevant three H on C next to $C=O$ Ignore missing trailing bonds or attached R group
(iii) 1.2

Or in words: two equivalent CH_{3} groups
Must clearly indicate two equivalent methyl groups.
Penalise attached H
Ignore missing trailing bonds or attached R groups
(iv)

6. (a) (i)
$\mathrm{H}_{3} \mathrm{C}-\mathrm{C}$
$\|$
\quad or $\mathrm{RCOCH}_{3} ;$
\quad (or description in words)
\quad (ignore trailing bonds)
(ii) $\mathrm{H}_{3} \mathrm{C}$-Oor ROCH_{3};
(allow 1 if both (i) and (ii) give CH_{3} - or $\mathrm{H}_{3} \mathrm{C}$ - only)
(iii) $\mathrm{CH}_{2} \mathrm{CH}_{2}$ or two adjacent methylene groups;
(b) (i) OH in acids or (carboxylic) acid present
(ii)

(c)

reagent	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$	$\mathrm{KMnO}_{4} / \mathrm{H}^{+}$
\mathbf{Y}	no reaction	no reaction
\mathbf{Z}	orange to green or turns green	purple to colourless or turns colourless

