

A-Level Chemistry

Ideal Gas Equation

Mark Scheme

Time available: 64 minutes Marks available: 56 marks

Mark schemes

1. (a) METHOD 1

Stage 1

M1 $n=\frac{P V}{R T}$

M2 converting P to 51.0×10^{3}, V to 482×10^{-6}

Stage 2

M4 converting mass to 0.717

METHOD 2

M1 $n=\frac{P V}{R T}$
M2 $\quad M_{r}=\frac{m R T}{P V}$
M3 converting P to 51.0×10^{3}, V to 482×10^{-6}
M4 converting mass to 0.717
M5 $\quad \mathrm{M}_{\mathrm{r}}=\left(\frac{0.717 \times 8.31 \times 297}{51.0 \times 10^{3} \times 482 \times 10^{-6}}\right)=72.0$ (at least 2 sf)

Both methods:

72.0 can be achieved with incorrect working and may not score because individual steps need to be assessed as correct
72.0 with no working scores no marks

If expression not written out, M1 could score from a substituted correct expression later on (even if any unit conversions are incorrect)

METHOD 1

- ECF from M2 to M3
- ECF from M3 to M4
- ECF from M4 to M5
- Ignore units for M3

METHOD 2

- ECF from M3 to M4
- ECF from M2 to M4
- ECF from M4 to M5
(b) M1 amount of CO_{2} formed in flask $=0.008 \mathrm{~mol}$

Allow ECF from M1 to M2

M2 amount of gas in flask
$=0.0075\left(\mathrm{O}_{2}\right)+0.0080(\mathrm{M} 1)=0.0155 \mathrm{~mol}$
2. (a) M1 $n=p V / R T$

M1 for rearrangement

M2

$$
\mathrm{n}=\frac{100000 \times(178 / 1000000)}{8.31 \times(273+120)}
$$

M2 for three unit conversions
M3 $\mathrm{n}=5.45 \times 10^{-3} \mathrm{~mol}$
$M_{r}=\mathrm{mass} / \mathrm{mol}$ or $0.460 / 5.45 \times 10^{-3}$
M3 for calculating the amount in moles of A
M4 $\quad M_{r}=\underline{84.4}$ Answer must be to 3 sig.fig.
M4: 0.460 / M3 given to 3sf
(b) Calculated Mr value would be greater than actual

> Mr = mass / moles so dividing by too small a value of moles gives a larger Mr than expected.

A lower volume would have been recorded / mass evaporated less than mass of liquid / lower moles calculated / mass recorded higher than mass of gas / mass recorded would be too high

M2 dependent on correct M1

1
(c) \% uncertainty $=($ uncertainty $/$ mass added $) \times 100$
$=((2 \times 0.001) / 0.460\} \times 100=0.435 \%$
3. (a) M1 Amount of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=\frac{9.00 \times 0.0800}{1000}=7.20 \times 10^{-4} \mathrm{~mol}$
(From equations mol $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=\mathrm{mol} \mathrm{Cu}^{2+}$)
M2 Amount of Cu^{2+} in $25 \mathrm{~cm}^{3}=7.20 \times 10^{-4} \mathrm{~mol}$
M2 = answer to M1 (1:1 ratio)

M3 Amount of Cu^{2+} in $250 \mathrm{~cm}^{3}=7.20$ v $10^{-4} \times \mathbf{1 0}=7.20 \times 10^{-3} \mathrm{~mol}$

$$
\mathbf{M} 3=\mathbf{M} \mathbf{2} \times 10
$$

M4 Mass of copper $=7.20 \times 10^{-3} \mathrm{~mol} \times \mathbf{6 3 . 5}=0.457 \mathrm{~g}$

$$
\mathbf{M 4}=\mathbf{M} \mathbf{~} \times 63.5
$$

M5 mass $=0.985 \mathrm{~g}$
M5 converting 985 mg to g

$$
\mathrm{M}^{6} \% \mathrm{Cu}=0.457 \times \frac{100}{0.985}=46.4 \%
$$

M6 is for the answer to $\mathbf{3} \mathbf{s f}$
Allow \% Cu $=457 \times \frac{100}{985}=46.4 \%$ for M5 and M6
Allow (M4 $\times 1000$)/985 v 100 for M5 and M6
(b) Use more of the alloy

Use a lower concentration of the thiosulfate solution/lower mass of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ to make solution

1

(c) Oxidizing agent

Allow electron acceptor
(d) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{9}$

Do not allow [Ar]3d ${ }^{9}$
(e) Full (3)d (sub)shell or (3)d ${ }^{10}$

No (d-d) transitions possible/ cannot absorb visible/white light M2 is dependent on M1
Ignore reflects visible/white light
(f) $\quad \mathbf{M} 1: \mathrm{n}=(5.00 / 253.8)=0.0197 \mathrm{~mol}$

Allow 254
If 126.9 or 127 used lose M1 only

M2: $\mathrm{T}=458 \mathrm{~K}$ and $\mathrm{P}=100000 \mathrm{~Pa}$
$\mathbf{M 3} \mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{P}}$ or $\frac{0.0197 \times 8.31 \times 458}{100000}$ or $7.50 \times 10^{-4}\left(\mathrm{~m}^{3}\right)$
M3 If rearrangement incorrect can only score M1 and M2
2: $=458$ and $=100000$ Pa

M4: $V=750\left(\mathrm{~cm}^{3}\right)$
M4: Allow M3 $\times 10^{6}$
M4: Allow 749
[16]

This question is marked using Levels of Response. Examiners should apply a 'best-fit' approach to the marking.	
	All stages are covered and the explanation of each stage is generally correct and virtually complete. Level 3 $5-6$ marks progression from stage 1 to stage 2 and then stage 3. Coherent communication requires that there is a comparison between the types of bonding and that the bonding is correct for each substance.
Level 2	All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows some progression from stage 1 to stage 2 and then stage 3.
$3-4$ marks	
Level 1	Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR only one stage is covered but the explanation is generally correct and virtually complete. Answer shows some progression between two stages
Level 0 marks	Insufficient correct chemistry to gain a mark.
0 marks	

Indicative chemistry content. Contradictions (eg molecules, IMFs, covalent bonding,) negate statements.

Stage 1-Na

1a) Na has metallic bonding
1b) there is attraction/ bonding between the positive nucleus/ ion and the delocalised electrons in Na
1c) Na has a giant/lattice structure

Stage $2-\mathrm{NaBr}$ or NaI

2a) lonic bonding in NaBr and/or Na
2b) There is attraction/ bonding between the + and - ions in NaBr and/or Nal
2c) NaBr and/or Nal have a giant/lattice structure

Stage 2 - comparison of bonding

3a) The ionic bonds are stronger (or wtte) than the metallic bonds
3b) there is stronger attraction (or wtte) between the + and - ions in NaBr than in Nal
3c) since the Br^{-}ion is smaller than the I - ion
(b) M1 Na $+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+1 / 2 \mathrm{H}_{2}$

Allow multiples

M2 (Mass $\mathrm{Na}=0.250 \mathrm{~g}$ so moles $\mathrm{Na}=0.250 / 23.0$) $=0.0109$
CE: If not divided by 23, max 3/5 calculation marks - M3, M4 and M5
AE: If not divided by 1000 and final answer is $1.33 \times 10^{5} \mathrm{~cm}^{3} 4 / 5$

M3 moles $\mathrm{H}_{2}=5.43 \times 10^{-3}$ to 5.45×10^{-3}
$M 3=M 2 / 2$
CE: If incorrect ratio used max 3/5 calculation marks - M2, M4 and M5

M4 $\quad \mathrm{T}=298(\mathrm{~K})$ and $\mathrm{P}=101000(\mathrm{~Pa})$

M5 $\quad V=n R T / P$ or $\left(5.435 \times 10^{-3} \times 8.31 \times 298\right) / 101000$ or $1.33 \times 10^{-4}\left(\mathrm{~m}^{3}\right)$

M6 $\quad V=133-134 \mathrm{~cm}^{3}$
Allow to 2 significant figures or more
(c) Conc $=0.0109 / 500 \times 10^{-3}=0.0217-0.022\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$

Allow M2 from question (b)
(d) M1

Ignore charge and brackets

M2 104.5°
Allow 104-106
1
M3 (4) electron pairs repel to be as far apart as possible

M4 lp/lp repulsion> lp/bp repulsion (> bp/bp repulsion)
For M4 allow lone pairs repel more than bonding pairs Mark independently
5. (a) Stage 1

M1 $n=\frac{P V}{R T}$

M2 $=\frac{102 \times 10^{3} \times 72 \times 10^{-6}}{8.31 \times 373}$

M3 $=0.0024 / 0.00237 / 0.002369 / 0.0023693 .$.

Stage 2
M4 $\quad M_{\mathrm{r}}\left(=\frac{\text { mass }}{\text { moles }}\right)=\frac{0.194}{\mathbf{M 3}}$

M5 $=82$ (2sf only)

As this is an extended response question, each separate step of correct working is required in M1-M5
Correct answer with no working scores 2 marks
M1 - If expression not written out, M1 could score from a correct expression for M2 (even if unit conversions are not correct for M2)
M2 - allow an expression that gives correct value for M3
M3 should be at least 2sf (do not allow 0.0023 but do allow 0.00236)

M4 must show 0.194 or 194×10^{-3} in working to score
M5 must be 2sf
ECF:

- No ECF within either stage 1 or stage 2 (except for transcription errors)
- Allow ECF from stage 1 into stage 2, i.e for M4 and M5 based on incorrect M3, (but if expression for M4 is inverted, cannot score M5)
- (Note that if 72×10^{-3} used in $\mathbf{M 2}$, then $\boldsymbol{M 3}=2.4, \boldsymbol{M} \mathbf{5}=0.082$) Ignore units for M3 and M5
Note that if $T=273+373=646, M 5=140$ (2sf)
(b) M1 dividing \%s by relative atomic masses
$\mathrm{C}=83.7 / 12(.0), \mathrm{H}=16.3 / 1(.0)$
converting ($\mathrm{C}: \mathrm{H} 6.975: 16.3$) to $3: 7$
empirical formula $=\mathrm{C}_{3} \mathrm{H}_{7}$
molecular formula $=\mathrm{C}_{6} \mathrm{H}_{14}$
M1 \& M2 are for working
M3 for $\mathrm{C}_{3} \mathrm{H}_{7}$ only, marked independently
M4 for $\mathrm{C}_{6} \mathrm{H}_{14}$ only, marked independently (ignore additional correct structures)
Formulae with no working cannot score M1 or M2

Alternative method:
M1 working that shows 83.7% of 86 is 72
M2 idea of 72/12 gives 6 C atoms

Alternative method:
working that shows that $\mathrm{C}_{6} \mathrm{H}_{14}\left(\right.$ or $\left.\mathrm{C}_{3} \mathrm{H}_{7}\right)$ contains 83.7% C scores M1 \& M2

