

A-Level Chemistry

Ideal Gas Equation

Question Paper

Time available: 64 minutes Marks available: 56 marks

www.accesstuition.com

1.

This question is about two experiments on gases.

(a) In the first experiment, liquid **Y** is injected into a sealed flask under vacuum. The liquid vaporises in the flask.

The table below shows data for this experiment.

Mass of Y	717 mg
Temperature	297 K
Volume of flask	482 cm ³
Pressure inside flask	51.0 kPa

Calculate the relative molecular mass of Y.

Show your working.

The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Relative molecular mass of Y	

(5)

(b)	In the second experiment, another flask is used for a combustion reaction.
	Method

- Remove all the air from the flask.
- Add 0.0010 mol of 2,2,4-trimethylpentane (C₈H₁₈) to the flask.
- Add 0.0200 mol of oxygen to the flask.
- Spark the mixture to ensure complete combustion.
- Cool the mixture to the original temperature.

The equation is

$$C_8 H_{18}(g) + 12\frac{1}{2} \, O_2(g) \rightarrow 8 \,\, CO_2(g) + 9 \,\, H_2O(I)$$

Calculate the amount, in moles, of gas in the flask after the reaction.

mount of gas	mol
	(2)
	(Total 7 marks)

This question is about a volatile liquid, **A**.

2.

(a) A student does an experiment to determine the relative molecular mass (M_r) of liquid **A** using the apparatus shown in the figure below.

The student injects a sample of **A** into a gas syringe in an oven.

At the temperature of the oven, liquid **A** vaporises.

The table shows the student's results.

Mass of fine needle syringe and contents before injecting	11.295 g
Mass of fine needle syringe and contents after injecting	10.835 g
Volume reading on gas syringe before injecting	0.0 cm ³
Volume reading on gas syringe after injecting	178.0 cm ³
Pressure of gas in syringe	100 kPa
Temperature of oven	120 °C

Calculate the M_r of A .
Give your answer to 3 significant figures.
The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
$M_{ m r}$
The student noticed that some of the liquid injected into the gas syringe did not vaporise.
Explain the effect that this has on the M_r calculated by the student.

The table is repeated here.

Mass of fine needle syringe and contents before injecting	11.295 g
Mass of fine needle syringe and contents after injecting	10.835 g
Volume reading on gas syringe before injecting	0.0 cm ³
Volume reading on gas syringe after injecting	178.0 cm ³
Pressure of gas in syringe	100 kPa
Temperature of oven	120 °C

(c) Each reading on the balance used to record the mass of the fine needle syringe and contents had an uncertainty of ± 0.001 g

Calculate the percentage uncertainty in the mass of liquid A injected in this experiment.

Percentage uncertainty _	
	(1)
	(Total 7 marks)

3.

A student does an experiment to determine the percentage of copper in an alloy.

The student

- reacts 985 mg of the alloy with concentrated nitric acid to form a solution (all of the copper in the alloy reacts to form aqueous copper(II) ions)
- pours the solution into a volumetric flask and makes the volume up to 250 cm³ with distilled water
- shakes the flask thoroughly
- transfers 25.0 cm³ of the solution into a conical flask and adds an excess of potassium iodide
- uses exactly 9.00 cm³ of 0.0800 mol dm⁻³ sodium thiosulfate (Na₂S₂O₃) solution to react with all the iodine produced.

The equations for the reactions are

$$2 \text{ Cu}^{2+} + 4 \text{ I}^{-} \rightarrow 2 \text{ CuI} + \text{I}_{2}$$

$$2 S_2 O_3^{2-} + I_2 \rightarrow 2 I^- + S_4 O_6^{2-}$$

(a) Calculate the percentage of copper by mass in the alloy.

Give your answer to the appropriate number of significant figures.

%	copper		
70	OOPPOI		

l		
3		
	e in the reaction with sodium thiosulfate.	
	configuration of a copper(II) ion.	
Copper(I) iodide is a v	white solid.	
Explain why copper(I) iodide is white.	

(f)	lodine vaporises easily.
	Calculate the volume, in cm ³ , that 5.00 g of iodine vapour occupies at 185 °C and 100 kPa
	The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
	Give your answer to 3 significant figures.

Volume	cm ³
	(4)

(Total 16 marks)

4. This question is about sodium and some of its compounds.

(a) Use your knowledge of structure and bonding to explain why sodium bromide has a melting point that is higher than that of sodium, and higher than that of sodium iodide.

(6)

(b)	When 250 mg of sodium were added to 500 cm ³ of water at 25 °C a gas was produced.	
(-)	Give an equation for the reaction that occurs. Calculate the volume, in cm ³ , of the gas formed at 101 kPa	
	The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$	
	Equation	
	Volume cm ³	
		(6)
(c)	Calculate the concentration, in mol dm^{-3} , of sodium ions in the solution produced in the reaction in part (b) .	
	Concentration mol dm ⁻³	
		(1)

Draw the shape of the NH2 ⁻ ion. Include any lone pairs of electrons that influence the shape. Predict the bond angle. Justify your prediction. Shape Bond angle Justification (Total 17 mark	Sodium reacts with ammonia to form the compound NaNH ₂ that contains the NH ₂ ⁻ ic	on.
Justify your prediction. Shape Bond angle Justification (·	
Bond angle Justification		
Justification	Shape	
Justification		
	Bond angle	
	Justification	
		<i>L</i>
	(To	-

(d)

5.	5.
----	----

An experiment was carried out to determine the relative molecular mass (M_r) of a volatile hydrocarbon **X** that is a liquid at room temperature.

A known mass of **X** was vaporised at a known temperature and pressure and the volume of the gas produced was measured in a gas syringe.

Data from this experiment are shown in the table.

Mass of X	194 mg
Temperature	373 K
Pressure	102 kPa
Volume	72 cm ³

((a)) Calculate	the	relative	molecular	mass	of	X
- 1	v,	, calculate		1 Clative	morodaiai	macc	٠.	-

Show your working.

Give your answer to the appropriate number of significant figures.

The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

(5)

(b)	Analysis of a different hydrocarbon Y shows that it contains 83.7% by mass of carb	on.
	Calculate the empirical formula of Y.	
	Use this empirical formula and the relative molecular mass of Y ($M_{\rm f}$ = 86.0) to calc molecular formula of Y .	ulate the
	Empirical formula	_
	Molecular formula	_
		(4) (Total 9 marks)