

A-Level Chemistry

Identification of Functional Groups

Mark Scheme

Time available: 64 minutes Marks available: 57 marks

www.accesstuition.com

Mark schemes

1.	(a)	M1	Q, R, S, T M1 Allow the mark for candidates who correctly name or draw the isomers.	1
		М2	(Orange solution) turns green Independent	1
	(b)	M 1	T As above	1
		М2	Silver mirror Allow grey/black ppt	1
	(c)	M 1	P, Q, R, S As above	1
		M2	Sweet smelling (liquid)	1
		М3	To react with (remove excess) acid / neutralise Allow easier to identify the smell	1
	(d)	Posit	ion Allow positional	1
	(e)	M 1	R & S have an <u>O-H alcohols</u> peak at <u>3230-3550</u> cm ⁻¹ Allow value within the range	1
		M2	T has <u>C=O</u> peak at <u>1680-1750</u> cm ^{−1}	1
		М3	R & S (unique) fingerprint region or below 1500 cm^{-1}	1
		M4	Compare to a database / known spectra (and look for an exact match)	1
	(f)	All ha	ive the same <i>M</i> _r Allow same (molecular) ion M/Z peak same molecular formula	1

[13]

M1 Named carbonate / hydrogencarbonate / bicarbonate (or Mg / Na)
Allow any correct chemical test.
Allow name or formula of suitable reagent in M1

M2 No (visible/observed) reaction/change/effect

1

1

M3 effervescence / bubbles (of gas) / fizzing

If no reagent or incorrect reagent in **M1**, CE = 0 and no marks for **M2** or **M3** In **M3** ignore reference to name/formula of correct gas, but penalise reference to name/formula of incorrect gas In **M3** allow reference to limewater going cloudy as an alternative Penalise incorrect formula of correct reagent (or incomplete reagent) in **M1**, but mark on for **M2** and **M3** Where there is no reaction, ignore "nothing (happens)" or "no observation"

1

OR

M1 universal indicator

M2 neutral / no change / pH7

M3 orange / red / pH < 7 / acidic

If use of named alcohol in **M1**, allow no reaction for **M2** and sweet smell for **M3**

Allow use of other suitable indicators (e.g. litmus)

(b) **M1** Tollens' (reagent) OR ammoniacal silver nitrate OR a description of making Tollens'

M2 No (visible/observed) reaction/change or stays colourless		
M3 silver mirror or black solid / precipitate		

OR

M1 Fehling's (solution) or Benedict's solution

M2 no (visible/observed) reaction/change or stays blue

M3 red solid / precipitate (credit orange or brown)

OR

M1 acidified potassium dichromate or $K_2Cr_2O_7/H_2SO_4$ or $K_2Cr_2O_7/H^+$ or acidified $K_2Cr_2O_7$

M2 no (visible/observed) reaction/change or stays orange

M3 (orange to) green solution or goes green

OR

M1 acidified potassium manganate(VII) or $KMnO_4/H_2SO_4$ *OR* $KMnO_4/H^+$ *OR* acidified $KMnO_4$

M2 no (visible/observed) reaction/change or stays purple

M3 (purple to) colourless solution OR goes colourless

Allow any correct chemical test.

If no reagent or incorrect reagent in **M1**, **CE** = **0** and no marks for **M2** or **M3**

Allow name or formula of suitable reagent in M1

Penalise incorrect formula of correct reagent in **M1**, but mark on for **M2** and **M3**

For Tollens' reagent: for **M1** ignore either $AgNO_3$ or $[Ag(NH_3)_2^+]$ or "the silver mirror test" on their own, or "Tolling's reagent", but mark **M2** and **M3**; for **M3** allow silver precipitate/deposit

For Fehling's/Benedict's solution: for **M1** Ignore $Cu^{2+}(aq)$ or $CuSO_4$ or "Fellings" on their own, but mark **M2** and **M3**

For acidified potassium dichromate(VI): if "dichromate" or "(potassium) dichromate(IV)" or incorrect formula or no acid, penalise **M1** but mark **M2** and **M3**; for **M3** ignore dichromate described as "yellow" or "red".

For acidified potassium manganate(VII): If "manganate" or "(potassium manganate(IV)" or incorrect formula or no acid, penalise **M1** but mark **M2** and **M3**.

1

1

Credit alkaline / neutral KMnO₄ for possible full marks but **M3** gives <u>brown</u> <u>precipitate</u> or solution goes <u>green</u> Where there is no reaction, ignore "nothing (happens)" or "no observation" This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.

	How to choose	the level	Requirements for communication for higher mark	Stages
Level 3 5-6 marks	All three stages are covered and explanation of each stage is generally correct and virtually complete – leads to all four compounds being distinguished		 Answer communicates whole process coherently with logical progression Chemical tests (appear to) start with all compounds rather than selected compounds Chemical tests reagents and observations are complete and correct Chemical tests leave two compounds to be distinguished by spectroscopy Enough detail is given about the spectroscopy to distinguish these two compounds Answer is mainly 	Stage 1 Carries out a test-tube reaction to identify a compound (or to split the compounds into two groups). 1a reagent 1b observation with correct deduction Stage 2 Carries out a second test-tube reaction to identify a second compound. 2a reagent 2b observation with correct deduction
Level 2 3-4 marks	All three stages are covered but the explanations of each stage may be incomplete or may contain inaccuracies	Two stages covered and explanations are generally correct and virtually complete	 Answer is mainly coherent Chemical tests reagents and observations are complete and correct Enough detail is given about the spectroscopy to distinguish these two compounds (if spectroscopy included) 	Stage 3 Uses spectroscopy to distinguish two compounds. 3a suitable technique 3b data that will distinguish compounds
Level 1 1-2 marks	Two stages covered but the explanations of each stage may be incomplete or may contain inaccuracies	One stage covered and explanation is generally correct and virtually complete	 Chemical tests reagents and observations are complete and correct (if awarded level 1 for one chemical test stage) Enough detail is given about the spectroscopy to distinguish these two compounds (if spectroscopy included) 	
0 marks	Nothing valid to	warrant a mark		

Possible test tube reactions

Tollens' reagent [or Fehling's / Benedict's]

Identifies butanal – silver mirror (or black ppt) [or orange/brick/red ppt with Fehling's]

(No reaction with other compounds)

Acidified potassium dichromate

Reacts with butanal and butan-2-ol – goes green

(No reaction with other compounds)

Sodium (not on specification but may be mentioned)

Reacts with butan-2-ol and 2-methylpropan-2-ol – fizzes

(No reaction with other compounds)

Examples of incomplete/incorrect reagents include "Tolling's solution", no acid with potassium dichromate, wrong oxidation state for Cr in potassium dichromate if stated.

Examples of incomplete/incorrect observations include silver precipitate with Tollens', green ppt with acidified potassium dichromate

Possible spectroscopic methods for a pair

IR (infra-red) spectroscopy

If different functional groups: need to identify wavenumber and bond of key functional group signal (e.g. (alcohol) O-H 3230-3550 or C=O 1680-1750 (cm⁻¹)).

If same functional group, need idea of using fingerprint region to look for match to known compounds / comparing region to samples in a database

Mass spectrometry

If different, can use different M_r values with values of M_r given butanone 72(.0), 2-methylpropan-2-ol = 74(.0), butan-2-ol = 74(.0), butanal = 72(.0)

If compounds have same M_r , then would have to use idea that fragmentation patterns would be different (not on specification but may be mentioned)

(a)

Aldehyde/propanal has dipole-dipole forces (between molecules)					
If any 'covalent bonds broken' CE=0 for clip.					

Ignore Van der Waal forces

M1

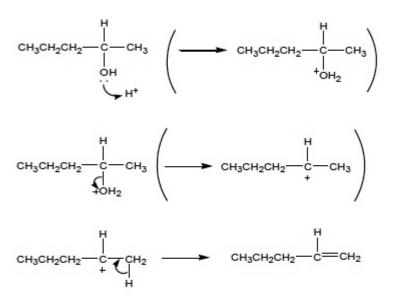
M2

[6]

Alcohol/propan-1-ol AND Carboxylic acid/ propanoic acid have hydrogen bonding (between molecules).

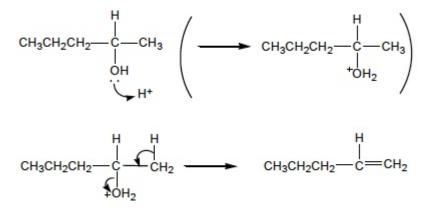
Ignore reference to energy

The forces between the molecules in aldehyde are weaker (than those in alcohol and acid so it will evaporate first.)


M3 only awarded following correct M1 OR M2 Allow converse for M3

(b)	Keep the temperature of the reaction mixture below the boiling point of propan-1-ol/be 97 $^{\circ}\mathrm{C}$		
	Allow temperature in range 49-96 inclusive		
	Allow description of cooling the vessel		
		M1	
	Cool the distillate / collecting vessel		
	Ignore reference to oxidising agents		
	Penalise lid / sealed container		
		M2	
(c)	Add named carbonate/hydrogencarbonate OR magnesium to a sample of the distillate. Incorrect chemical CE=0		
	Allow formula (mark on for incorrect formula)		
	Allow blue litmus or correct named indicator		
		M1	
	Effervescence/fizz/bubbles would confirm presence of acid or converse		
	Blue litmus turns red confirms acid present or converse		
	Allow gas/CO ₂ produced which turns lime water cloudy OR gas/H ₂		
	produced which burns with a squeaky pop		
		M2	
(d)	(Temperature difference = 15.1 °C)		
	If ΔT wrong – AE mark on otherwise can only award M2		
	If use 457 in M1, can only score M2		
	q = 150 × 4.18 × 15.1 or 9467.7 J or 9.4677kJ	M1	
	amount ethanol burned = $0.457/46.0 = 9.93 \times 10^{-3}$ mol		
	If use 457 in M2 can score 2 for - 0.953 kJ mol-1		
		M2	
	Heat change per mole = (M1/1000)/M2 = 952.99 kJ mol-1		
	$\Delta H = -953 \text{ kJ mol}^{-1} \text{ must be 3sfs and must be negative}$		
	(allow range -953 to -954)		
	BEWARE if they miss conversion to kJ and also miss		
	conversion to g, they get answer = -953 which scores 1		
	+953 can score M1 and M2		
	Allow -950 or -960 for rounding to 2sf		
		M3	
(e)	Elimination		
(~)	Penalise base elimination		

Penalise base elimination


M1

Mechanism : Either (E1)

M2 for protonation of alcohol, i.e. Ip plus arrow to H⁺ or to H of H–O– in H_2SO_4 and from H-O bond to O M3 for protonated alcohol plus arrow showing loss of water M4 for arrow showing loss of H⁺ From correct carbocation (E1) wrong alcohol used / alkene formed loses M4

OR (E2)

M2 for protonation of alcohol, i.e. Ip plus arrow to H⁺ or to H of H–O– in H_2SO_4 and from H-O bond to O M3 for protonated alcohol plus arrow showing loss of water

M4 for arrow showing simultaneous loss of H⁺ wrong alcohol used / alkene formed loses M4 3

(f) E-pent-2-ene

Allow trans

C=C bond cannot rotate and

Each carbon in the double bond has (2) different groups attached.

Allow (two) different groups on each/either side of the double bond.

M2

M1

This question is marked using Levels of Response. Refer to the Mark Scheme Instructions for Examiners for guidance.

Level 3 (5 – 6 marks)

5.

All stages are covered and each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from Stage 1 to Stages 2 and 3 to distinguish all the compounds with results for all remaining compounds stated. Describing subsequent organic test on product (unnecessary) - limits to lower mark in level

Level 2 (3 – 4 marks)

All stages are covered but stage(s) may be incomplete or may contain inaccuracies OR two stages are covered and are generally correct and virtually complete. Answer is communicated mainly coherently and shows a logical progression from Stage 1 to Stages 2 and 3.

Describing subsequent organic test on product (unnecessary) - limits to lower mark in level

Level 1 (1 – 2 marks)

Two stages are covered but stage(s) may be incomplete or may contain inaccuracies OR only one stage is covered but is generally correct and virtually complete. Answer includes isolated statements but these are not presented in a logical order.

Level 0 (0 marks)

Insufficient correct chemistry to gain a mark.

Indicative chemistry content

Stage 1: An initial test to separate into two groups (2 groups of 2 OR 1 group of 3 and 1 group of 1)

Stage 2: A second test to distinguish within a group or to separate into two further groups

Stage 3: A third test leads to a set of results/observations which distinguishes between all 4 compounds

Tests must include reagent and observation which identifies compound(s)

-COOH

- a) NaHCO₃ / Na₂CO₃ (or correct alternative)
- b) effervescence /gas turns limewater milky
- c) K and /or M but not L and/or N

-OH and -CHO

- d) acidified K₂Cr₂O₇
- e) solution turns green
- f) K and/or L and/or N but not M

-CHO

- g) Fehlings OR Tollens
- h) red ppt OR silver mirror
- i) N only but not K and/or L and/or M

-Br

- j) Silver nitrate
- k) cream ppt
- I) L and/or N but not K and/or M

Isolated tests on individual compounds - max LEVEL 2 Isolated tests not linked to any compound – max LEVEL 1 Penalise observation if deduction wrong, but allow observation if deduction incomplete

Alternative tests

-соон	-СООН	-OH only		
 a) named alcohol & H₂SO₄ b) sweet smell (of ester) c) K and /or M but not L and/or N 	 a) named indicator b) correct colour c) K and /or M but not L and/or N 	 m) named carboxylic acid & H₂SO₄ n) sweet smell (of ester) o) K and/or L but not M and /or N 		

			н н₃с—с—соон он	СН ₃ H ₃ C—С—СН ₂ ОН Br	сн ₃ н ₃ с—с—соон н	СН ₃ H ₃ C—С—СНО Br
	Test	Tests for	К	L	Μ	Ν
a)	NaHCO ₃ / Mg / Indicator	КM	\checkmark	X	\checkmark	x
d)	K ₂ Cr ₂ O ₇ / H ⁺	KLN	\checkmark	\checkmark	X	\checkmark
g)	Fehlings / Tollens	N	×	X	X	\checkmark
j)	AgNO ₃ see Note	LN	×	\checkmark	X	\checkmark
a)	named alcohol & H_2SO_4	КМ	1	X	1	x
m)	named carboxylic acid & H ₂ SO ₄	KL	√	√	×	x

Note * allow NaOH then HNO_3 , $AgNO_3$ as one test; but treat NaOH, $AgNO_3$ without acid as incomplete, so can mark on.

6.

(a) Bromine (water) 1 Colour change from orange to colourless 1 (b) Add sodium hydrogencarbonate (or alternative named carbonate) 1 Allow suitable correct alternative test e.g. 1 Test the pH with named indicator (e.g. Universal Indicator) 1 Propanoic acid will produce effervescence / bubbles 1 Propanoic acid would turn Universal Indicator red 1

[6]

(c) Tollen's reagent

(•)		1	
	(Colourless solution to) silver mirror	1	
		1	
	OR		
	Fehling's solution		
	(Blue solution to) brick red precipitate		
(d)	Absorption at 1680–1750 cm ⁻¹ caused by C=O		
		1	
	No absorption at 1620–1680 cm ⁻¹ caused by C=C	1	
		1	
	No absorption at 3230–3550 cm ⁻¹ due to $-OH$ (alcohol)	1	
	No absorption at 2500–3000 cm ⁻¹ due to $-OH$ (acid)		
		1	
			[10]