A-Level Chemistry Identification of Functional Groups Question Paper Time available: 64 minutes Marks available: 57 marks www.accesstuition.com This question is about the structural isomers shown. F Q R S Т U (a) Identify the isomer(s) that would react when warmed with acidified potassium dichromate(VI). State the expected observation when acidified potassium dichromate(VI) reacts. Isomer(s) Expected observation _____ (2) (b) Identify the isomer(s) that would react with Tollens' reagent. State the expected observation when Tollens' reagent reacts. Isomer(s) _____ Expected observation _____ (2) | Separate samples of each isomer are warmed with ethanoic acid and a few drops of concentrated sulfuric acid. In each case the mixture is then poured into a solution of sodium hydrogencarbonate. | | |---|----------------| | Identify the isomer(s) that would react with ethanoic acid. | | | Suggest a simple way to detect if the ethanoic acid reacts with each isomer. | | | Give a reason why the mixture is poured into sodium hydrogencarbonate solution. | | | Isomer(s) | | | Suggestion | | | | | | Reason | | | State the type of structural isomerism shown by isomers P, Q, R and S. | | | Describe fully how infrared spectra can be used to distinguish between isomers R , S a Use data from Table A in the Data Booklet in your answer. | and T . | (f) | State why mass spectrometry using electrospray ionisation is not a suitable method distinguish between the isomers. | I to | |-------|---|----------------------------| | | | -
-
(1) | | The | | otal 13 marks) | | rne | structures of three organic compounds A, B and C are shown. | | | | он он | | | | Compound A Compound B Compound C | | | Thes | se compounds can be distinguished by simple test-tube reactions. | | | | each pair of compounds in questions (a) and (b) , give a reagent (or combination of recould be added separately to each compound to distinguish between them. | agents) | | State | e what is observed in each case. | | | (a) | Compounds A and B | | | | Reagent | | | | Observation with A | | | | Observation with B | _ | | (b) | Compounds A and C | (3) | | () | Reagent | | | | Observation with A | | | | Observation with C | _ | | | | _
(3)
Total 6 marks) | - butan-2-ol - butanal - butanone - 2-methylpropan-2-ol Two of these compounds can be identified using different test-tube reactions. | Describe these two test-tube reactions by giving reagents and observations in each ca
Suggest how the results of a spectroscopic technique could be used to distinguish between | | |---|----------------| | other two compounds. | | | | | | | | | | | | | _ | | | | | | | | | | (Total 6 marks | **4.** The oxidation of propan-1-ol can form propanal and propanoic acid. The boiling points of these compounds are shown in the table. | Compound | Boiling point / °C | |----------------|--------------------| | propan-1-ol | 97 | | propanal | 49 | | propanoic acid | 141 | In a preparation of propanal, propan-1-ol is added dropwise to the oxidising agent and the aldehyde is separated from the reaction mixture by distillation. | th reference to inter
from the other organ | | | |---|------|--| | | | | | | | | |
 | | | |
 |
 | | |
 | | | | | | | |
 | | | |
 |
 | | | | | | | | | | |
 | | | |
 |
 | | | | | | | | | | |
 |
 | | |
 | | | | | | | | | | | (3) | 4 | | | | | |------------------|----------------------------------|--------------------|--------------------|---------------| | 1 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | | 2. | | | | | | | | | | Describe how you | would carry out a simp | le test-tube react | on to confirm that | the sample of | | | d by distillation does no | | | • | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | (d) | A student carried out an experiment to determine the enthalpy of combustion Combustion of 457 mg of ethanol increased the temperature of 150 g of water to 40.2 °C | | | |-----|--|---------------|-----| | | Calculate a value, in kJ mol ⁻¹ , for the enthalpy of combustion of ethanol in this Give your answer to the appropriate number of significant figures. | s experiment. | | | | (The specific heat capacity of water is 4.18 J K ⁻¹ g ⁻¹) | Enthalpy of combustion | | (3) | | (e) | A mixture of isomeric alkenes is produced when pentan-2-ol is dehydrated in of hot concentrated sulfuric acid. Pent-1-ene is one of the isomers produced. | the presence | | | | Name and outline a mechanism for the reaction producing pent-1-ene. | | | | | Name of mechanism | | | | | Mechanism | (4) | (f) | A pair of stereoiso | omers is also formed in the | e reaction in part (e). | | |------------------|--|--|----------------------------|----------------------------| | | • | lar stereoisomer formed.
ype of stereoisomerism ar | ises. | | | | Name | | | | | | Explanation | | | | | | | | | | | | | | | (2 | | Test- | tube reactions can | be used to identify the fur | octional groups in organic | (Total 16 marks | | | | amples of each of the four | | molecules. | | | • | · | · | CH ₂ | | H ₃ C | :-c-соон | $\begin{array}{c}CH_3\\ \\H_3C-C-CH_2OH\\ \\Br\end{array}$ | H ₃ C — С— СООН | H ₃ C — C — CHO | | | ОН
К | Br
L | H
M | N
N | | | cribe how you could
on each compoun | d distinguish between all fo
d. | our compounds using the | minimum number of | | You | should describe wh | at would be observed in e | each test. | | | | | | |
(Total 6 marks | | a) | Name the reagent(s) that the student could use to identify the sample that was pent-1-end Describe the observation(s) that the student would make to confirm this. | |----|--| | | Reagent(s) | | | Observation(s) | | | Name the reagent(s) that the student could use to identify the sample that was pentanoic acid. | | | Describe the observation(s) that the student would make to confirm this. | | | Reagent(s) | | | Observation(s) | |) | Name the reagent(s) that the student could use to identify the sample that was pentanal. | | | Describe the observation(s) that the student would make to confirm this. | | | Reagent(s) | | | Observation(s) | | | | | | | (d) The student deduced that the spectrum in the image below was that of pentanal. | pentanoic acid or pent-1-ene. | | |-------------------------------|--| (4) (Total 10 marks)