

A-Level Chemistry

Intermolecular Forces

Mark Scheme

Time available: 68 minutes Marks available: 65 marks

www.accesstuition.com

Mark schemes

M1 two lone pairs on each O atom and δ + and δ- on each H-O bond

M2 <u>dotted/broken</u> line shown between lone pair on one molecule and the correct H on another

M3 O^{.....}H–O in straight line, dependent on *M2* Ignore any partial charges on C–H or C–O bonds For straight line in *M3*, allow a deviation of up to 15°

If a different molecule containing hydrogen bonding due to O–H bond drawn (e.g. methanol, water) or an incorrect attempt at the structure of ethanol, then maximum of 2 marks (i.e. only penalise if would score all three marks otherwise)

(b) Hydrogen bonds (between ethanol molecules)

(permanent) dipole-dipole <u>OR</u> van der Waals force (between methoxymethane molecules)

Allow vdW

Hydrogen bonds are stronger/est intermolecular force Allow more energy to break/overcome hydrogen bonding Allow converse arguments 1

1

1

1

1

1

	``
1	<u>^</u>
L	ບາ
•	

3.

SiH ₄	Tetrahedral		1 shape & no tick
PH_3	Pyramidal (trigonal) Allow tetrahedral	\checkmark	1 shape & tick
BeCl ₂	Linear		1 shape & no tick
CH ₃ CI	(Distorted)Tetrahedral	\checkmark	1 shape & tick

If shapes are drawn rather than named then penalise first mark gained

4

[7]

[7	

 $SrCl_2 > ICl > Br >$ (a) If wrong can award 1 for one in the correct 'position' 2 SrCl₂ strong ionic bonds / (strong electrostatic attraction between opposite ions) 1 Lattice so many strong bonds to overcome 1 ICI has dipole-dipole between molecules - weaker than ionic bonds 1 Br₂ has van der Waals forces between molecules – much weaker Accept London / dispersion / induced dipole forces 1 $CI_2 + H_2O \Rightarrow HCI + HCIO$ (b) $OR 2Cl_2 + 2H_2O \Rightarrow O_2 + 4HCl$ $OR Cl_2 + H_2O \rightleftharpoons 2H^+ + C\Gamma + ClO^-$ 1 Kills bacteria 1 Wasteful as most potable water not used for drinking - used in washing clothes etc OR Some people suffer eye irritation / Some people find the taste unpleasant OR can react with organic compounds to produce harmful substances Allow 'it is potentially toxic as it can be if over concentrated'

(c) $6Br_2 + P_4 \longrightarrow 4PBr_3$ Accept 4P for P_4

4.

				1	
	Pyra	midal shown in a diagram (but the name of the shape isn't needed)		1	
	100-	-108° Actual value is 101° (hence larger range of values allowed)		_	
(d)	Tetra	ahedral shown in a diagram (but the name of the shape isn't needed)		1	
	109.	5° Accept 109° or 109°28'		1	
(a)	Elec	tron movement in first molecule / temporary dipole		[′	14]
()		Allow description			
	Induces a dipole in another molecule				
	Allow description (Induced-temporary) attraction or δ+ attracts δ- in different/adjacent molecules <i>M3 dependent on M1 <u>and</u> M2</i>				
		Allow electrostatic attraction			
		M3 could be scored in diagram			
		If other type of force / metallic / ionic / polar bonds / permanent dipoles / difference in electronegativity mentioned CE = 0			
			1		
(b)	(i)	(Methanol) H-bonds / hydrogen bonding			
		(Methanethiol) dipole-dipole forces or van der Waals	1		
		H-bonds are a strong <u>er</u> / are the strongest IMF	1		
		Allow H-bonds require more energy to overcome			
		If M1 and M2 not scored, allow 1 for methanol has stronger IMFs			
		If breaking covalent bonds then CE=0			
			1		
	(ii)	(Fractional) distillation			
		Allow description			
		Do not allow heating unqualified			
			1		

	(c)	 (Methaneselenol is a) bigger molecule / larger Mr / larger no of electrons / Se bigger atom 			
		With <u>stron</u>	ger/more vdw forces between molecules If breaking covalent bonds then CE=0	1	
	(d)	(i) F F	F F F Diagram showing 6 bond pairs	1	
		(Bor	Ind angle) 90° for SF ₆ Ignore 180°	1	
		Octa	ahedral	1	
		0	F = F = F $F = F = F$ $F = F = F$ $F = F$ $F = F$	1	
			Diagram showing 4 bond pairs and 1 lone pair		
		(Bor	nd angles) for SF ₄ If shape of SF ₄ is not based on 4 bond pairs <u>and 1 lone pair</u> cannot score M4 or M5	1	
		Any Allov Allov Allov	two from: v 85 – 89° Do not allow 90° v 100 – 119° Do not allow 120° v 170 – 179° Do not allow 180°	2	
		(ii) NaC	I (as product in any equation)		
		3 SC	$Cl_2 + 4 \text{ NaF} \rightarrow SF_4 + S_2Cl_2 + 4 \text{ NaCl}$ Allow multiples Ignore states	1	
				1	[17]
5.	(a)	Hydrogen	bonding / hydrogen bonds / H-bonding / H-Bonds Not just hydrogen.		1

One mark for minimum of 4 correct partial charges shown on the N-H and O-H

One mark for the 3 lone pairs.

One mark for H bond from the lone pair on O or N to the $H^{\delta+}$

OR

The N-H-O should be linear but can accept if the lone pair on O or N hydrogen bonded to the H If wrong molecules or wrong formula, CE = 0/3

(c) (Phosphine) does not form hydrogen bonds (with water)

3

1

1

1

[5]

(a) tendency / strength / ability / power of an <u>atom / element / nucleus</u> to attract / pull / withdraw electrons / e - density / bonding pair / shared pair

in a covalent bond

(b)

(b)	(i)	F ₂ = van der Waals' / induced/temporary dipole-dipole / dispersion / London forces	1
			1
		CH ₃ F dipole-dipole	
		(not just 'dipole')	1
			1
		HF = hydrogen bonding	
		(not just 'H' / 'hydrogen')	1
			1
	(ii)	large difference in electronegativity between H and F / F	
		(not just thigh or)	
		(norjust high <u>cr</u>)	1
		δ^{+1} , ∇^{δ}_{r} divide created or divide clearly implied	
		"H-F" dipole created or dipole clearly implied	
		'polar bond' E slightly negative / H slightly nositive)	
		personal of a singling hegalive / H singling pestive/	1
		attraction/bond formed between δ +H and lone pair on F	
		(M2 / M3 may be scored from a diagram)	
		(CE if full charges shown - lose M2 and M3)	
			1
(c)	(i)	van der Waals' / induced/temporary dipole-dipole / dispersion /	
()	()	London forces / attractions	
		(ignore references to dipole-dipole)	
			1
		increase with the increasing M_r / size / mass / N $^{\circ}$ of e ⁻ / size	
		of e⁻ cloud (in the hydrogen halides)	
		(if ionic, or if 'covalent bonds broken' = $CE = 0$)	
		(mark M1 and M2 separately)	
			1
	(ii)	hydrogen bonding stronger than van der Waals' attraction/forces	
		(accept hydrogen bonding is very strong / strongest)	
		(accept arguments such as 'HF has H-bonds, others <u>only</u> have van der Waals')	
		(not just 'HF has H-bonding')	
			1

[11]