

A-Level Chemistry Introduction to Organic Chemistry Question Paper

Time available: 63 minutes Marks available: 58 marks

www.accesstuition.com

(a) Draw the skeletal formula of 3-methylbutanal. (b) Draw the displayed formula of C ₅ H ₁₁ Br that is the major product of the reaction of 2-methylbut-2-ene with hydrogen bromide. (c) Thermal cracking of hydrocarbons produces molecules that are attacked by electrophiles because they have a region of high electron density. Draw the structure of one of these molecules that contains four carbon atoms.	This	s question is about the structures of some organic molecules.	
(b) Draw the displayed formula of C ₅ H ₁₁ Br that is the major product of the reaction of 2-methylbut-2-ene with hydrogen bromide. (1) (c) Thermal cracking of hydrocarbons produces molecules that are attacked by electrophiles because they have a region of high electron density. Draw the structure of one of these molecules that contains four carbon atoms.	(a)	Draw the skeletal formula of 3-methylbutanal.	
(b) Draw the displayed formula of C ₅ H ₁₁ Br that is the major product of the reaction of 2-methylbut-2-ene with hydrogen bromide. (1) (c) Thermal cracking of hydrocarbons produces molecules that are attacked by electrophiles because they have a region of high electron density. Draw the structure of one of these molecules that contains four carbon atoms.			
(b) Draw the displayed formula of C ₅ H ₁₁ Br that is the major product of the reaction of 2-methylbut-2-ene with hydrogen bromide. (1) (c) Thermal cracking of hydrocarbons produces molecules that are attacked by electrophiles because they have a region of high electron density. Draw the structure of one of these molecules that contains four carbon atoms.			
(b) Draw the displayed formula of C ₅ H ₁₁ Br that is the major product of the reaction of 2-methylbut-2-ene with hydrogen bromide. (1) (c) Thermal cracking of hydrocarbons produces molecules that are attacked by electrophiles because they have a region of high electron density. Draw the structure of one of these molecules that contains four carbon atoms.			
(b) Draw the displayed formula of C ₅ H ₁₁ Br that is the major product of the reaction of 2-methylbut-2-ene with hydrogen bromide. (1) (c) Thermal cracking of hydrocarbons produces molecules that are attacked by electrophiles because they have a region of high electron density. Draw the structure of one of these molecules that contains four carbon atoms.			
2-methylbut-2-ene with hydrogen bromide. (1) (c) Thermal cracking of hydrocarbons produces molecules that are attacked by electrophiles because they have a region of high electron density. Draw the structure of one of these molecules that contains four carbon atoms.			(1)
(c) Thermal cracking of hydrocarbons produces molecules that are attacked by electrophiles because they have a region of high electron density. Draw the structure of one of these molecules that contains four carbon atoms.	(b)		
(c) Thermal cracking of hydrocarbons produces molecules that are attacked by electrophiles because they have a region of high electron density. Draw the structure of one of these molecules that contains four carbon atoms.			
(c) Thermal cracking of hydrocarbons produces molecules that are attacked by electrophiles because they have a region of high electron density. Draw the structure of one of these molecules that contains four carbon atoms.			
(c) Thermal cracking of hydrocarbons produces molecules that are attacked by electrophiles because they have a region of high electron density. Draw the structure of one of these molecules that contains four carbon atoms.			
(c) Thermal cracking of hydrocarbons produces molecules that are attacked by electrophiles because they have a region of high electron density. Draw the structure of one of these molecules that contains four carbon atoms.			
(c) Thermal cracking of hydrocarbons produces molecules that are attacked by electrophiles because they have a region of high electron density. Draw the structure of one of these molecules that contains four carbon atoms.			(1)
(1)	(c)		(.,
		Draw the structure of one of these molecules that contains four carbon atoms.	
(Total 3 marks)		(Total 3	

1.

/:\	Identify the homelessy coving to which extend belongs
(i)	Identify the homologous series to which octane belongs.
(ii)	Write an equation to show the complete combustion of C_8H_{18}
(iii)	
	$\begin{array}{ccc} & \text{CH}_3 & \text{CH}_3 \\ & & \\ & \\ & \text{H}_3\text{C} - \text{C} - \text{CH}_2 - \text{C} - \text{H} \\ & & \\ & \text{CH}_3 & \text{CH}_3 \end{array}$
	Give the IUPAC name of this isomer.
) Co	mpound X is produced when an alkane is cracked.
	H C=C CH ₂ CH ₃ H X
(i)	Give the IUPAC name for compound X .
(ii)	One molecule of an alkane is cracked to produce one molecule of compound X , one molecule of octane and one molecule of ethene.
	Deduce the molecular formula of this alkane.

Type of cracking _____

Conditions _____

Give two conditions required for this process.

		_	1371		 -				
l	IV'	Comr	oound X ha	s several iso	mers. The	structure o	OT X IS	repeated	here
١		, OOp		0 00 10.0.		01.4014.0		. op catea	

$$C=C$$
 CH_2CH_3
 $C=C$
 CH_2CH_3

Draw the displayed formula of a chain isomer, a position isomer and a functional group isomer of compound ${\bf X}$.

Type of isomer	Displayed formula of isomer of compound X
Chain	
Position	
Functional group	

(3)

(Total 10 marks)

- Central heating fuel, obtained by the fractional distillation of crude oil, contains saturated hydrocarbons with the molecular formula $C_{16}H_{34}$
 - (a) Give the meaning of the terms **saturated** and **hydrocarbon** as applied to saturated hydrocarbons.

Saturated _____

Hydrocarbon _____

A/rit	e an equation for the reaction that forms this poisonous gas and one other product on
/ V I I L	e an equation for the reaction that forms this poisonous gas and one other product on
	lain why the sulfur compounds found in crude oil should be removed from the fractions ore they are used for central heating fuel.
\ hy	vdrocarbon $C_{16}H_{34}$ can be cracked to form C_8H_{18} , ethene and propene.
	vdrocarbon $C_{16}H_{34}$ can be cracked to form C_8H_{18} , ethene and propene. Write an equation to show this cracking reaction.
i)	
i) ii)	Write an equation to show this cracking reaction.
i) ii)	Write an equation to show this cracking reaction. Suggest one important substance manufactured on a large scale from propene.
A hy (ii)	Write an equation to show this cracking reaction. Suggest one important substance manufactured on a large scale from propene.

(e)	There are many structural isomers with the molecular formula C_8H_{18}
	Draw the structure of 2.3.3-trimethylpentane

(1)

(f) A compound C₈H₁₈ reacts with chlorine to give several haloalkanes.

Give the IUPAC name of the following haloalkane.

(1)

(Total 10 marks)

4.

(i)

(a) The hydrocarbon but-1-ene (C_4H_8) is a member of the homologous series of alkenes. But-1-ene has structural isomers.

State the meaning of the term <i>structural isomers</i> .	

(2)

(ii) Give the IUPAC name of the **position** isomer of but-1-ene.

(1)

	(111)	Give the IUPAC name of the chain isomer of but-1-ene.	
	(iv)	Draw the displayed formula of a functional group isomer of but-1-ene.	
(b)	But-	1-ene burns in a limited supply of air to produce a solid and water only.	
	(i)	Write an equation for this reaction.	
	(ii)	State one hazard associated with the solid product in part (b)(i).	
(c)		mole of compound \mathbf{Y} is cracked to produce two moles of ethene, one mole of 1-ene and one mole of octane (C_8H_{18}) only.	
	(i)	Deduce the molecular formula of Y.	
	(ii)	Other than cracking, give one common use of Y .	
d)		ars fitted with catalytic converters, unburned octane reacts with nitrogen monoxide carbon dioxide, water and nitrogen only.	to
	(i)	Write an equation for this reaction.	
	(ii)	Identify a catalyst used in a catalytic converter.	
		(Tota	al 11 mar
'ent	ane is	s a member of the alkane homologous series.	
(a)	Give	the general formula for the homologous series of alkanes.	

5.

(1)

(b)	One of the structural isomers of pentane is 2,2-dimethylpropane.	
	Draw the displayed formula of 2,2-dimethylpropane.	
	State the type of structural isomerism shown.	
		(2)
(c)	A molecule of hydrocarbon Y can be thermally cracked to form one molecule of pentane and two molecules of ethene only.	
	Deduce the molecular formula of Y.	
	State why high temperatures are necessary for cracking reactions to occur.	
	Give one reason why thermal cracking reactions are carried out in industry.	
		(3)

Suggest why	this solid pollutant is an environmental problem.	
Pentane can	react with chlorine as shown in the following equation.	
	$C_5H_{12} + CI_2 \rightarrow C_5H_{11}CI + HCI$	
Calculate the	e percentage atom economy for the formation of C ₅ H ₁₁ Cl	
Deduce how	many straight-chain isomers of C ₅ H ₁₁ Cl could be formed.	
		<u> </u>

	(f)	Consider the following	compound
--	-----	------------------------	----------

Name this compound.

Deduce t	hΔ	<u>emnirical</u>	I formula	of this	comr	haund
Deduce i	HE	empinca	Hommula	01 11115	COLLIF	Jouria.

(2) (Total 13 marks)

6. Hexane is a member of the homologous series of alkanes.

(a) State **two** characteristics of a homologous series.

Characteristic 1			

Characteristic 2			

2,2-dichlorohexane.	I formula
Empirical formula (ii) Explain why 2,2-dichloro-3-methylpentane is a structural isomer of 2,2-dichlorohexane. A reaction of hexane with chlorine is shown by the equation below.	
(ii) Explain why 2,2-dichloro-3-methylpentane is a structural isomer of 2,2-dichlorohexane. A reaction of hexane with chlorine is shown by the equation below.	
(ii) Explain why 2,2-dichloro-3-methylpentane is a structural isomer of 2,2-dichlorohexane. A reaction of hexane with chlorine is shown by the equation below.	
(ii) Explain why 2,2-dichloro-3-methylpentane is a structural isomer of 2,2-dichlorohexane. A reaction of hexane with chlorine is shown by the equation below.	
(ii) Explain why 2,2-dichloro-3-methylpentane is a structural isomer of 2,2-dichlorohexane. A reaction of hexane with chlorine is shown by the equation below.	
A reaction of hexane with chlorine is shown by the equation below.	
A reaction of hexane with chlorine is shown by the equation below.	
061114 + 2019 → 061112012 + 21101	
Calculate the percentage atom economy for the formation of $C_6H_{12}CI_2$ in this reac	ction.
The boiling points of some straight-chain alkanes are shown below.	
Alkane C_4H_{10} C_5H_{12} C_6H_{14}	
Boiling point / °C – 0.5 36.3 68.7	
Dolling Point / C -0.5 30.5 60.7	

	Name a process which can be used to separate C ₅ H ₁₂ from C ₆ H ₁₄	(ii)
(1)		
(Total 11 marks)		