

# A-Level Chemistry Ionic Product of Water (Kw) 

Mark Scheme

Time available: 55 minutes Marks available: 49 marks

1. (a) completely dissociates/ionises (to form $\mathrm{H}^{+}$ions)
(b) M1 moles $\mathrm{HCl}=1.035 \times 10^{-3}$ and moles $\mathrm{Ba}(\mathrm{OH})_{2}=3.75 \times 10^{-3}$ If M1 incorrect, lose M1 and M6

M2 moles $\mathrm{OH}^{-}=\underline{2 \times}\left(3.75 \times 10^{-3}=7.50 \times 10^{-3}\right)$
If M2 not x2, lose M2 and M6

M3 $\mathrm{XS} \mathrm{n} \mathrm{OH}^{-}=7.50 \times 10^{-3}-1.035 \times 10^{-3}=6.465 \times 10^{-3} \mathrm{~mol}$ in $35.35 \mathrm{~cm}^{3}$
If no subtraction for M3, lose M3 and M6

M4 $[\mathrm{OH}]=6.465 \times 10^{-3} / 35.35 \times 10^{-3}=0.182885 \mathrm{~mol} \mathrm{dm}^{-3}$
$=M 3 / 35.35 \times 10^{-3}$
If M4 not $/ 35.35 \times 10^{-3}$, lose M4 and M6
However, if divided by 35.35 only lose M4 and allow M6 (ecf = 10.09)

M5 $\quad\left[\mathrm{H}^{+}\right]=K_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=1.47 \times 10^{-14} / 0.182885=8.0378 \times 10-14 \mathrm{~mol} \mathrm{dm}^{-3}$
$=1.47 \times 10^{-14} / \mathrm{M} 4$
If incorrect rearrangement or wrong equation, lose M5 and M6
If $K_{w}=1.00 \times 10^{-14}$ used only lose M5 and allow M6 (ecf = 13.26)

M6 $\mathrm{pH}=13.09$ to 13.10
Must be 2dp
1
Alternative MS to get M2:
Starting amounts are $1.035 \times 10^{-3} \mathrm{~mol} \mathrm{HCl}$ and $3.75 \times 10^{-3} \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2} \mathrm{M} 1$
So the HCl will react with $5.175 \times 10^{-4} \mathrm{~mol}$ of the $\mathrm{Ba}(\mathrm{OH})_{2}$ leaving an excess of $3.2325 \times$ $10^{-3} \mathrm{~mol}$ of $\mathrm{Ba}(\mathrm{OH})_{2}$ (as alternative M 2 )

So $\mathrm{n} \mathrm{OH}^{-}=2 \times 3.2325 \times 10^{-3}=6.465 \times 10^{-3} \mathrm{~mol} \mathrm{M} 3$
Credit other methods eg limiting reagent method since HCl limiting reagent
(c) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
(e) $K_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
(f) M1 moles HCl added $=0.01 \mathrm{~mol}$ and moles $\mathrm{CH}_{3} \mathrm{COOH}=0.035 \mathrm{~mol}$

M2 moles $\mathrm{CH}_{3} \mathrm{COO}^{-}=0.025-0.01(=0.015)$
$\mathrm{M} 2 \mathrm{~mol} \mathrm{CH} \mathrm{COO}^{-}=0.025-\mathrm{M} 1(\mathrm{HCl})$
1

M3 moles $\mathrm{CH}_{3} \mathrm{COOH}=0.035+0.01(=0.045)$
$\mathrm{M} 3 \mathrm{~mol} \mathrm{CH} 33 \mathrm{COOH}=\mathrm{M} 1\left(\mathrm{CH}_{3} \mathrm{COOH}\right)+\mathrm{M} 1(\mathrm{HCl})$

M4 $\left[\mathrm{H}^{+}\right]=1.76 \times 10^{-5} \times \frac{\text { M3 }(/ \mathrm{V})}{\text { M2 ( } \mathrm{V})}\left(=5.28 \times 10^{-5}\right)$
M4 is conditional on an attempt at an addition/subtraction in M2 OR M3

M5 $\mathrm{pH}=\underline{4.28}$
M5 must be 2dp
If used 0.07 mol for $\mathrm{CH}_{3} \mathrm{COOH}$ can score $\mathrm{M} 2, \mathrm{M3}$ and M 4 ( $\mathrm{pH}=$ 4.03)
2. (a) M1: $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$

M1: accept equal number/amounts of $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$

M2: $\left[\mathrm{H}^{+}\right]\left(=10^{-\mathrm{pH}}\right)=2.138 \times 10^{-7}$
M2: allow $2.14 \times 10^{-7}$

M3: $K_{w}=\left[\mathrm{H}^{+}\right]^{2}$ or $\left(2.138 \times 10^{-7}\right)^{2}$
M3: allow (M2) ${ }^{2}$

M4: $K_{w}=4.57 \times 10^{-14}$
M4: allow $4.58 \times 10^{-14}$
M4 is dependent on (an answer) ${ }^{2}$ in M3
(b) View with Figure X (ie graph) as they may show working there.

Ignore calculations of mols of salt or acid
M1: Determines volume at half equivalence $\left(=\frac{19.5}{2} \mathrm{~cm}^{3}\right)=9.75\left(\mathrm{~cm}^{3}\right)$
M1: Allow reading on graph to be from 19.4 to 19.7 giving M1 = 9.7 to 9.85

M2: $\mathrm{pH}=4.80$ to 4.95
M2: Reads off pH at half equivalence

M3: $K_{\mathrm{a}}\left(=10^{-\mathrm{pH}}\right)=10^{-4.9}=1.26 \times 10^{-5}$
M3: Allow $1.12 \times 10^{-5}$ to $1.58 \times 10^{-5}$
M3: Allow 2 sf or more

Alternative method
M1: pH of pure acid $=3$
M2: $K_{\mathrm{a}}=\left(10^{-3}\right)^{2} / 0.080$
M3: $=1.25 \times 10^{-5}$
Alternative M1 if calculation incorrect:
Allow $\mathrm{pH}=\mathrm{pK} K_{a}$ or $\left[\mathrm{H}^{+}\right]=K_{a}$ at half equivalence
(c) cresolphthalein
(d)

M1: $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right][\mathrm{X}]}{[\mathrm{HX}]}$ or $\quad\left[\mathrm{H}^{+}\right]=\frac{K_{3} \times[\mathrm{HX}]}{[\overline{\mathrm{X}}]}$

$$
\text { M1: }{ }^{\text {allow }}\left[\mathrm{H}^{+}\right]=\frac{K_{a} \times[\text { acid }]}{[\text { salt }]}
$$

M2: amount of $\mathrm{HX}=0.0500 \mathrm{~mol}$

M3: amount of HX after add ${ }^{n}$ of $\mathrm{KOH}=0.05-\underline{3 \times 10^{-4}}=0.0497 \mathrm{~mol}$

$$
\text { M3: }=\mathbf{M 2}-3 \times 10^{-4}
$$

M4: amount of KX after add $^{\mathrm{n}}$ of $\mathrm{KOH}=0.0136+\underline{3 \times 10^{-4}}=0.0139 \mathrm{~mol}$

M5: $\left[\mathrm{H}^{+}\right]=\left(\frac{1.41 \times 10^{-5} \times 0.0497}{0.0139}\right)=\underline{5.04(15) \times 10^{-5}}$
1

M6: $\mathrm{pH}=-\log _{10} 5.04(15) \times 10^{-5}=4.30$
Answer to 2 decimal places
If no attempt at M3 and M4 max 2 marks
If M3 or M4 attempted using $3 \times 10^{-4} \max 4$ (M1, M2, M3 or M4 and M6)
(e)
ratio $\frac{[\mathrm{HX}]}{\left[\mathrm{X}^{-}\right]}$
Allow inverse expression
3. (a) $A n s=C$
(b) $\quad\left[\mathrm{H}^{+}\right]=\sqrt{ } K_{w}=\sqrt{ } 2.93 \times 10^{-15} \quad\left(=5.41 \times 10^{-8}\right)$
$\mathrm{pH}=\left(-\log \left(5.41 \times 10^{-8}\right)=\underline{7.27}\right.$
Must be 2dp
7.27 scores 2 marks
(c) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
allow description in words
equal moles / quantities / numbers / ratio of $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$
-
(d) $\left[\mathrm{OH}^{-}\right]=0.0131 \underline{\times 2}=0.0262$
pH = 12.95 scores 3 marks
$p H=12.42$ scores 2 marks $\left(K_{w}=1 \times 10^{-14}\right)$
pH = 12.65 scores 1 mark (not multiplied by 2)
pH = 12.35 scores 1 mark (divided by 2)
$p H=12.12$ scores 0 marks (no $\times 2$ and wrong $K_{w}$ )
(e) smaller / lower pH / less alkaline / more acidic

If not smaller $C E=0 / 2$
Allow pH number between 8 and 12
(magnesium hydroxide) is less soluble / sparingly soluble/ solubility of hydroxide increases down group II

M2 dependent on M1 but if blank mark on
Ignore concentration and dissociation
Ignore incorrect formula
Do not allow $\mathrm{Mg}(\mathrm{OH})_{2}$ is insoluble
$\mathrm{pH}=\left(-\log \left(1.118 \times 10^{-13}\right)=12.9514=12.95\right.$
Or
$\left[\mathrm{OH}^{-}\right]=0.0131 \times 2=0.0262$
$\mathrm{pOH}=(-\log 0.0262)=1.5817$
$\mathrm{pH}=\left(-\log K_{w}-\mathrm{pOH}=-\log 2.93 \times 10^{-15}-1.58=14.53-1.58\right)=12.95$
allow to 2dp or more
4. (a) $\left[\mathrm{H}_{2} \mathrm{O}\right]$ is very high (compared with $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$)

OR
Very few $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$ions
OR
Only / very slightly dissociates
OR
Equilibrium lies far to the left
Not partially dissociates
[ $\mathrm{H}_{2} \mathrm{O}$ ] is (effectively) constant
OR is incorporated into the constant K
Allow changes by only a very small amount
M2
1
(b) (Dissociation OR breaking bonds) is endothermic

1
$\therefore$ Equilibrium moves to RHS (at higher T) to absorb heat or to lower T or oppose increase in T

Allow to oppose change only if increase $T$ mentioned
1
(c) $\left[\mathrm{H}^{+}\right]=\sqrt{ } \mathrm{K}_{\mathrm{w}}\left(\right.$ or $\left.=\sqrt{ } 5.48 \times 10^{-14}\right)$

Correct pH answer scores 3
1
If wrong method no marks
Using alternative $K_{w}\left(1.00 \times 10^{-14}\right)$ gives $\mathrm{pH}=7 . \underline{00}$ which scores 1

$$
=2.34 \times 10^{-7}
$$

$\mathrm{pH}=6.63$
Final answer must have 2dp
(d) $\left[\mathrm{H}^{+}\right]=K_{w} /\left[\mathrm{OH}^{-}\right]$or $\left(=5.48 \times 10^{-14} / 0.12\right)$

Correct pH answer scores 3

If wrong method no marks
If use alternative $K_{w}\left(1.00 \times 10^{-14}\right)$ again, do not penalise repeat error so $\mathrm{pH}=13.08$ scores 3
$=4.566 \times 10^{-13}$
$\mathrm{pH}=12.34$
If use alternative $K_{w}\left(1.00 \times 10^{-14}\right)$ not as a repeat error, $\mathrm{pH}=13.08$ scores 1
If $A E$ in $K_{w}$ value made in part (c) is repeated here, do not penalise again.
Final answer must have 2dp, but if dp penalised in (c) allow more than 2dp here but not fewer.


