

## A-Level Chemistry Ionic Product of Water (Kw)

**Question Paper** 

Time available: 55 minutes Marks available: 49 marks

www.accesstuition.com

| In an experiment, $10.35~\rm cm^3$ of $0.100~\rm mol~dm^{-3}$ hydrochloric acid are added to $25.0~\rm cm^3$ of $0.150~\rm mol~dm^{-3}$ barium hydroxide solution. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calculate the pH of the solution that forms at 30 °C                                                                                                               |
| $K_{\rm w} = 1.47 \times 10^{-14}  \rm mol^2  dm^{-6}  at  30  ^{\circ}C$                                                                                          |
| Give your answer to 2 decimal places.                                                                                                                              |
|                                                                                                                                                                    |
|                                                                                                                                                                    |
|                                                                                                                                                                    |
|                                                                                                                                                                    |
|                                                                                                                                                                    |
|                                                                                                                                                                    |
| pH                                                                                                                                                                 |
| The pH of water at 30 °C is 6.92                                                                                                                                   |
| Give the reason why water is neutral at this temperature.                                                                                                          |

1.

| (d) | Identify the oxide that could react with water to form a solution with pH = 2                                                                     |        |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|     | Tick ( <b>√</b> ) <b>one</b> box.                                                                                                                 |        |
|     | Al <sub>2</sub> O <sub>3</sub>                                                                                                                    |        |
|     | Na <sub>2</sub> O                                                                                                                                 |        |
|     | SiO <sub>2</sub>                                                                                                                                  |        |
|     | SO <sub>2</sub>                                                                                                                                   |        |
|     |                                                                                                                                                   | (1)    |
| (e) | Give the expression for the acid dissociation constant ( $K_a$ ) for ethanoic acid (CH <sub>3</sub> COOH).                                        |        |
|     | $\mathcal{K}_{a}$                                                                                                                                 | (1)    |
| (f) | A buffer solution contains 0.025 mol of sodium ethanoate dissolved in 500 cm $^3$ of 0.0700 mol dm $^{-3}$ ethanoic acid at 25 $^{\circ}\text{C}$ |        |
|     | A sample of 5.00 cm <sup>3</sup> of 2.00 mol dm <sup>-3</sup> hydrochloric acid is added to this buffer solution.                                 |        |
|     | Calculate the pH of the solution formed.                                                                                                          |        |
|     | For ethanoic acid, $K_a = 1.76 \times 10^{-5} \text{ mol dm}^{-3}$ at 25 °C                                                                       |        |
|     |                                                                                                                                                   |        |
|     |                                                                                                                                                   |        |
|     |                                                                                                                                                   |        |
|     |                                                                                                                                                   |        |
|     |                                                                                                                                                   |        |
|     | ~!!                                                                                                                                               |        |
|     | pH                                                                                                                                                | (5)    |
|     | (Total 15 m                                                                                                                                       | narks) |

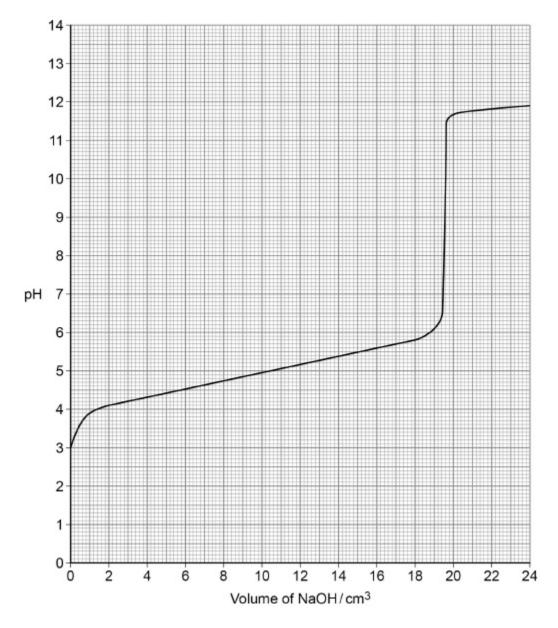
This question is about different pH values.

(a) For pure water at 40 °C, pH = 6.67
 A student thought that the water was acidic.

Explain why the student was incorrect.

Determine the value of K<sub>w</sub> at this temperature.

Explanation \_\_\_\_\_\_


2.

 $K_{\rm w}$  \_\_\_\_\_ mol<sup>2</sup> dm<sup>-6</sup>

(4)

(b) Sodium hydroxide solution was added gradually from a burette to 25 cm $^3$  of 0.080 mol dm $^{-3}$  propanoic acid at 25 °C The pH was measured and recorded at regular intervals.

The results are shown in the diagram.



Use the diagram above to determine the value of  $\mathcal{K}_a$  for propanoic acid at 25 °C Show your working.

(c) Suggest which indicator is the most appropriate for the reaction in part (b)? Tick (√) one box.

| Indicator        | pH range    | Tick (√) one box |
|------------------|-------------|------------------|
| methyl orange    | 3.1 - 4.4   |                  |
| bromothymol blue | 6.0 - 7.6   |                  |
| cresolphthalein  | 8.2 - 9.8   |                  |
| indigo carmine   | 11.6 - 13.0 |                  |

(1)

| (d) | A student prepared a buffer solution by adding 0.0136 mol of a salt KX to 100 cm <sup>3</sup> of a 0.500 mol dm <sup>-3</sup> solution of a weak acid HX and mixing thoroughly. |     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | The student then added $3.00 \times 10^{-4}$ mol of potassium hydroxide to the buffer solution.                                                                                 |     |
|     | Calculate the pH of the buffer solution after adding the potassium hydroxide.                                                                                                   |     |
|     | For the weak acid HX at 25 °C the value of the acid dissociation constant, $K_a = 1.41 \times 10^{-5}  \text{mol dm}^{-3}$ .                                                    |     |
|     | Give your answer to two decimal places.                                                                                                                                         |     |
|     |                                                                                                                                                                                 |     |
|     |                                                                                                                                                                                 |     |
|     |                                                                                                                                                                                 |     |
|     |                                                                                                                                                                                 |     |
|     |                                                                                                                                                                                 |     |
|     |                                                                                                                                                                                 |     |
|     |                                                                                                                                                                                 |     |
|     |                                                                                                                                                                                 |     |
|     |                                                                                                                                                                                 |     |
|     |                                                                                                                                                                                 |     |
|     |                                                                                                                                                                                 |     |
|     |                                                                                                                                                                                 |     |
|     | pH                                                                                                                                                                              | (6) |
|     |                                                                                                                                                                                 |     |
|     |                                                                                                                                                                                 |     |
|     |                                                                                                                                                                                 |     |
|     |                                                                                                                                                                                 |     |
|     |                                                                                                                                                                                 |     |
|     |                                                                                                                                                                                 |     |

(e) A buffer solution has a constant pH even when diluted.

Use a mathematical expression to explain this.

(1) (Total 15 marks)

The ionic product of water,  $K_w = 2.93 \times 10^{-15} \,\text{mol}^2 \,\text{dm}^{-6}$  at 10 °C

(a) Which is the correct expression for  $K_w$ ?

Tick (**√**) **one** box.

$$\mathbf{A} \qquad \mathbf{K}_{w} = \frac{\left[\mathbf{H}_{2}\mathbf{O}\right]}{\left[\mathbf{H}^{+}\right]\left[\mathbf{O}\mathbf{H}^{-}\right]}$$

$$\mathbf{B} \qquad \mathbf{K}_{w} = \left[\mathbf{H}^{+}\right] \left[\mathbf{H}_{2}\mathbf{O}\right]$$

$$\mathbf{C}$$
  $K_{\mathbf{W}} = \left[\mathbf{H}^{+}\right] \left[\mathbf{O}\mathbf{H}^{-}\right]$ 

$$\mathbf{D} \qquad \mathbf{K}_{w} = \frac{\left[\mathbf{H}^{+}\right]\left[\mathbf{O}\mathbf{H}^{-}\right]}{\left[\mathbf{H}_{2}\mathbf{O}\right]}$$

(1)

|   | Calculate the pH of pure water at 10 °C                                                                   |
|---|-----------------------------------------------------------------------------------------------------------|
|   | Give your answer to two decimal places.                                                                   |
|   |                                                                                                           |
|   |                                                                                                           |
|   | pH of water                                                                                               |
| ļ | Suggest why this pure water at 10 °C is <b>not</b> alkaline.                                              |
| - |                                                                                                           |
| - |                                                                                                           |
| ( | Calculate the pH of a $0.0131\mathrm{moldm^{-3}}$ solution of calcium hydroxide at $10\mathrm{^{\circ}C}$ |
|   | Give your answer to two decimal places.                                                                   |
|   |                                                                                                           |
|   |                                                                                                           |
|   |                                                                                                           |
|   |                                                                                                           |
|   | pH of solution                                                                                            |
|   |                                                                                                           |

| ( | e) | The $0.0131  \text{mol dm}^{-3}  \text{ca}$ | alcium hydroxide | solution at 10° | C was a satu | rated solution.          |
|---|----|---------------------------------------------|------------------|-----------------|--------------|--------------------------|
| ١ | σ, | 1110 010 10 11101 4111 00                   |                  | oolation at 10  | Oao a cat    | #: Gto G O O : Gti O : : |

A student added 0.0131 mol of magnesium hydroxide to 1.00 dm<sup>3</sup> of water at 10 °C and stirred the mixture until no more solid dissolved.

Predict whether the pH of the magnesium hydroxide solution formed at 10  $^{\circ}$ C is larger than, smaller than or the same as the pH of the calcium hydroxide solution at 10  $^{\circ}$ C

Explain your answer.

| ~ I I  | ~ t |     |        | امان ما المان المام | compared | 4a aala: |      | , al # a > ; al a |
|--------|-----|-----|--------|---------------------|----------|----------|------|-------------------|
| $\Box$ | OI  | mao | nesium | nvaroxiae           | compared | to caici | um m | /OTOXIOE          |
|        |     |     |        |                     |          |          |      |                   |

| <br> | <br> | <br> |  |
|------|------|------|--|
|      |      |      |  |

| Explanation |  |
|-------------|--|
| •           |  |

(2)

(Total 9 marks)

4.

Water dissociates slightly according to the equation:

$$H_2O(I) \implies H^+(aq) + OH^-(aq)$$

The ionic product of water,  $K_{\!\scriptscriptstyle W}$ , is given by the expression

$$K_{\text{w}} = [H^+][OH^-]$$

 $K_{\!\scriptscriptstyle W}$  varies with temperature as shown in the table.

| Temperature / °C | K <sub>w</sub> / mol <sup>2</sup> dm <sup>−6</sup> |  |  |
|------------------|----------------------------------------------------|--|--|
| 25               | $1.00 \times 10^{-14}$                             |  |  |
| 50               | 5.48 × 10 <sup>-14</sup>                           |  |  |

| (a) | Explain why the | expression for | or <i>K</i> w | does r | <b>not</b> include | the | concentration | of water |
|-----|-----------------|----------------|---------------|--------|--------------------|-----|---------------|----------|
|-----|-----------------|----------------|---------------|--------|--------------------|-----|---------------|----------|

| <br> |  |  |
|------|--|--|

|                       | e the pH of pure water at 50 °C.<br>Ir answer to 2 decimal places.                             |  |
|-----------------------|------------------------------------------------------------------------------------------------|--|
|                       |                                                                                                |  |
|                       |                                                                                                |  |
|                       |                                                                                                |  |
|                       |                                                                                                |  |
|                       |                                                                                                |  |
|                       |                                                                                                |  |
| -                     |                                                                                                |  |
| Calculate<br>Give you | e the pH of 0.12 mol dm <sup>-3</sup> aqueous NaOH at 50 °C.<br>Ir answer to 2 decimal places. |  |
|                       |                                                                                                |  |
|                       |                                                                                                |  |
|                       |                                                                                                |  |
|                       |                                                                                                |  |
|                       |                                                                                                |  |
|                       |                                                                                                |  |

(Total 10 marks)

(3)