

A-Level Chemistry

Ionic and Metallic Bonding

Mark Scheme

Time available: 58 minutes Marks available: 56 marks

www.accesstuition.com

Mark schemes

1

	(d)) Layers can slide over each other – idea that ions/atoms/particles move [Not molecules]				
		[NOL layers	separatej		1	
	(e)	(i) <u>Na</u>	CI	<u>0</u>		
		<u>21.6</u> 23	<u>33.3</u> 35.5	<u>45.1</u> 16	1	
		0.9(39) Hence: 1 Accept backward and also accept r	0.9(38) 1 s calculation, i.e. oute via <i>M</i> _r to 23	2.8(2) 3 from formula to % composition, ; 35.5; 48, and then to 1:1:3		
		[If any wron	na A. values/atom	ic numbers used = $CF = 01$		
			ig / i valueo, atom		1	
		(ii) 3Cl ₂ + 6NaOH →	5NaCl + NaClO ₃	, + 3H ₂ O	1	[12]
2.	(a)	Bright light / white light	/ white powder/a	sh/solid		1
		$Mg(s) + H_2O(g) \rightarrow MgC$	D(s) + H ₂ (g)			
		State symb	ols essential			
						1
	(b)	M1: Attraction between	(lattice of) Mg ²⁺	ions		
		M1 attractio between +	on between nucle ions and delocali	eus and delocalised electrons or sed electrons		1
		M2: And delocalised el	ectrons			
		M2 outer sl	hell electrons dela	ocalised		
						1
	(c)	(Giant) ionic lattice / lot	s of Mg²+ and Cl⁻	ions		
						1
		Strong (electrostatic) for	orces of attraction			1
			_			1
		Between Mg ²⁺ and Cl ⁻	ions	20		
		Αποίν ορρο	Silery charged for	15		1
	(d)	Indigestion relief / laxat	ive / neutralise (e	excess stomach) acid		
		Allow milk o	of magnesia			
						ı [8]

www.accesstuition.com

3.

(a)

(i) d (block) **OR** D (block)

Ignore transition metals / series. Do not allow any numbers in the answer.

 (ii) Contains positive (metal) ions or protons or nuclei and <u>delocalised / mobile /</u> <u>free / sea of</u> electrons <u>Ignore atoms.</u>

<u>Strong attraction</u> between them or <u>strong metallic</u> bonds Allow 'needs a lot of energy to break / overcome' instead of 'strong'. If strong attraction between incorrect particles, then CE = 0 / 2. If molecules / intermolecular forces / covalent bonding / ionic bonding mentioned then CE=0.

M1 is for regular arrangement of atoms / ions (min 6 metal particles). M2 for + sign in each metal atom / ion. Allow 2⁺ sign.

- (iv) <u>Layers / planes / sheets of atoms or ions</u> can slide over one another *QoL.*
- (b) (i) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 (4s^0)$ Only.
 - (ii) NiCl₂.6H₂O + **6** SOCl₂ \longrightarrow NiCl₂ + **6** SO₂ + **12** HCl Allow multiples.

NaOH / NH₃ / CaCO₃ / CaO Allow any name or formula of alkali or base. Allow water.

[9]

1

1

1

2

1

1

1

1

(a)

(b)

(c)

Allow body centred cubic

One mark for regular arrangement of particles. Can have a space between them Do not allow hexagonal arrangement

1

OR

Na⁺ Na⁺ Na⁺

One mark for + in each Ignore electrons If it looks like ionic bonding then $CE = 0/2$ (i) <u>lonic</u> CE = 0 for (b)(i) and (b)(ii) if not ionic (ii) Strong (electrostatic) attraction Any mention of IMF or molecules / metallic / covalent in (b)(ii) then CE 0/2 Between <u>oppositely</u> charged ions / particles Or + and - ions 1 lodide / I ⁻ bigger (ion) (so less attraction to the Na+ ion) Need comparison Do not allow iodine is a bigger atom Ignore I ⁻ has one more c ⁻ shell CE = 0 if IMF / covalent / metallic mentioned			Na ⁺ Na ⁺	
Ignore electronsIf it looks like ionic bonding then $CE = 0/2$ (i)Inic $CE = 0$ for (b)(i) and (b)(ii) if not ionic(ii)Strong (electrostatic) attractionAny mention of IMF or molecules / metallic / covalent in (b)(ii) then $CE 0/2$ 1Between oppositely charged ions / particles $Or + and - ions$ 1Iodide / I ⁻ bigger (ion) (so less attraction to the Na+ ion)Need comparisonDo not allow iodine is a bigger atomIgnore I' has one more c ⁻ shell $CE = 0$ if IMF / covalent / metallic mentioned			One mark for + in each	
If it looks like ionic bonding then $CE = 0/2$ (i) <u>lonic</u> CE = 0 for (b)(i) and (b)(ii) if not ionic (ii) Strong (electrostatic) attraction Any mention of IMF or molecules / metallic / covalent in (b)(ii) then CE 0/2 1 Between <u>oppositely</u> charged ions / particles Or + and - ions 1 lodide / I ⁻ bigger (ion) (so less attraction to the Na+ ion) Need comparison Do not allow iodine is a bigger atom Ignore I ⁻ has one more c ⁻ shell CE = 0 if IMF / covalent / metallic mentioned			Ignore electrons	
(i) Lonic CE = 0 for (b)(i) and (b)(ii) if not ionic (ii) Strong (electrostatic) attraction Any mention of IMF or molecules / metallic / covalent in (b)(ii) then CE 0/2 1 Between <u>oppositely</u> charged ions / particles Or + and - ions 1 lodide / I ⁻ bigger (ion) (so less attraction to the Na+ ion) Need comparison Do not allow iodine is a bigger atom Ignore I ⁻ has one more c ⁻ shell CE = 0 if IMF / covalent / metallic mentioned			If it looks like ionic bonding then $CE = 0/2$	
 (i) lonic CE = 0 for (b)(i) and (b)(ii) if not ionic (ii) Strong (electrostatic) attraction Any mention of IMF or molecules / metallic / covalent in (b)(ii) then CE 0/2 Between oppositely charged ions / particles Or + and - ions Ilodide / I⁻ bigger (ion) (so less attraction to the Na+ ion) Need comparison Do not allow iodine is a bigger atom Ignore I⁻ has one more c⁻ shell CE = 0 if IMF / covalent / metallic mentioned				1
CE = 0 for (b)(i) and (b)(ii) if not ionic (ii) Strong (electrostatic) attraction Any mention of IMF or molecules / metallic / covalent in (b)(ii) then CE 0/2 1 Between <u>oppositely</u> charged ions / particles Or + and - ions 1 lodide / I ⁻ bigger (ion) (so less attraction to the Na+ ion) Need comparison Do not allow iodine is a bigger atom Ignore I ⁻ has one more c ⁻ shell CE = 0 if IMF / covalent / metallic mentioned	((i)	lonic	
1 (ii) Strong (electrostatic) attraction Any mention of IMF or molecules / metallic / covalent in (b)(ii) then $CE 0/2$ 1 Between oppositely charged ions / particles $Or + and - ions$ 1 Iodide / I ⁻ bigger (ion) (so less attraction to the Na+ ion) Need comparison Do not allow iodine is a bigger atom Ignore I ⁻ has one more c ⁻ shell $CE = 0$ if IMF / covalent / metallic mentioned			CE = 0 for (b)(i) and (b)(ii) if not ionic	
 (ii) Strong (electrostatic) attraction Any mention of IMF or molecules / metallic / covalent in (b)(ii) then CE 0/2 Between oppositely charged ions / particles Or + and - ions Iodide / I⁻ bigger (ion) (so less attraction to the Na+ ion) Need comparison Do not allow iodine is a bigger atom Ignore I⁻ has one more c⁻ shell CE = 0 if IMF / covalent / metallic mentioned 				1
Any mention of IMF or molecules / metallic / covalent in (b)(ii) then CE 0/2 1 Between <u>oppositely</u> charged ions / particles Or + and - ions 1 lodide / I ⁻ bigger (ion) (so less attraction to the Na+ ion) Need comparison Do not allow iodine is a bigger atom Ignore I ⁻ has one more c ⁻ shell CE = 0 if IMF / covalent / metallic mentioned	((ii)	Strong (electrostatic) attraction	
$CE \ 0/2$ I Between <u>oppositely</u> charged ions / particles $Or + and - ions$ I lodide / I ⁻ bigger (ion) (so less attraction to the Na+ ion) $Need \ comparison$ $Do \ not \ allow \ iodine \ is \ a \ bigger \ atom$ $Ignore \ I^{-} has \ one \ more \ c^{-} \ shell$ $CE = 0 \ if \ IMF / \ covalent \ / \ metallic \ mentioned$			Any mention of IMF or molecules / metallic / covalent in (b)(ii) then	
Between <u>oppositely</u> charged ions / particles Or + and - ions 1 Iodide / I ⁻ bigger (ion) (so less attraction to the Na+ ion) Need comparison Do not allow iodine is a bigger atom Ignore I ⁻ has one more c ⁻ shell CE = 0 if IMF / covalent / metallic mentioned			CE 0/2	4
Between <u>oppositely</u> charged ions / particles Or + and - ions 1 lodide / I ⁻ bigger (ion) (so less attraction to the Na+ ion) Need comparison Do not allow iodine is a bigger atom Ignore I ⁻ has one more c ⁻ shell CE = 0 if IMF / covalent / metallic mentioned				1
Or + and - ions Iodide / I ⁻ bigger (ion) (so less attraction to the Na+ ion) Need comparison Do not allow iodine is a bigger atom Ignore I ⁻ has one more c ⁻ shell CE = 0 if IMF / covalent / metallic mentioned			Between oppositely charged ions / particles	
Iodide / I ⁻ bigger (ion) (so less attraction to the Na+ ion) Need comparison Do not allow iodine is a bigger atom Ignore I ⁻ has one more c ⁻ shell CE = 0 if IMF / covalent / metallic mentioned			Or + and – ions	
lodide / I ⁻ bigger (ion) (so less attraction to the Na+ ion) Need comparison Do not allow iodine is a bigger atom Ignore I ⁻ has one more c ⁻ shell CE = 0 if IMF / covalent / metallic mentioned				1
Need comparison Do not allow iodine is a bigger atom Ignore I ⁻ has one more c^- shell CE = 0 if IMF / covalent / metallic mentioned	I	odic	de / I ^{$-$} bigger (ion) (so less attraction to the Na+ ion)	
Do not allow iodine is a bigger atom Ignore I ⁻ has one more c^- shell CE = 0 if IMF / covalent / metallic mentioned			Need comparison	
Ignore I ⁻ has one more c^- shell CE = 0 if IMF / covalent / metallic mentioned			Do not allow iodine is a bigger atom	
CE = 0 if IMF / covalent / metallic mentioned			Ignore l⁻ has one more c⁻ shell	
1			CE = 0 if IMF / covalent / metallic mentioned	
1				1

www.accesstuition.com

[7]

1

(a)	(i)	Average/mean mass of 1 atom (of an element);		
		Average mass of 1 atom × 12.		
			1	
		Mass 1/12 atom of ¹² C;		
		Mass 1 atom of ¹² C.		
		QWC.		
			1	
	(ii)	Other isotope = 46.0%;		
			1	
		107.0 - (54 × 107.1) + (46 × ?)		
		107.9 - 100 ;		
		M2 whole expression.		
			1	
		108.8;		
		Answer 108.8 (3 marks).		
		Answer min 1 d.p		
			1	
		Same electronic configuration/ same number of electrons (in		
		outer shell)/ both have 47 electrons;		
		Ignore protons and neutrons unless incorrect. Not just electrons determine chemical properties		
			1	
(b)	Ionis	sation:		
(0)	Torno		1	
	high energy electrons fired at sample;			
		, new election gan , shaced man electione.	1	
	Acco	eleration.		
	Acceleration,			
	\\/ith	a clastric field/accolorating potential/potential difference:		
	vviti	Allow by pegative plate		
		Allow by hegalive plate.	1	
	Deflection			
	Den		1	
	With electromagnet/ magnet/ magnetic field;			
		M2 dependent on M3. M4 dependent on M3.		
		M6 dependent on M5.		
			1	

5.

(c)	(Silver) metallic (bonding);				
	Vdw/molecules CE=0.	1			
	Regular arrangement of same sized particles;	1			
	+ charge in each ion;				
	Candidates do not need to show delocalised electrons.	1			
(d)	lonic (bonds);	1			
	Minimum 4 ions shown in 2D square arrangement placed Correctly; Do not allow multiple charges on ions.	1			
	Further 3 ions shown correctly in a cubic lattice;	1			
	Strong (electrostatic) forces/bonds; If $vdw/molecules/covalent mentioned CE = 0 for M4 and M5$				
	Between + and - ions:	1			
	Accept between <u>oppositely charged ions</u> .	1			

[20]