

A-Level Chemistry

Weak Acids Dissociation

 Constant (Ka)Mark Scheme

Time available: 64 minutes Marks available: 62 marks

Mark schemes

1. (a) Burette

Because it can deliver variable volumes

1

1

(b) The change in pH is gradual / not rapid at the end point

An indicator would change colour over a range of volumes of sodium hydroxide
Allow indicator would not change colour rapidly / with a few drops of NaOH
(c) $\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=1.58 \times 10^{-12}$
$K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$therefore $\left[\mathrm{OH}^{-}\right]=K_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]$

Therefore, $\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} / 1.58 \times 10^{-12}=6.33 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
Allow 6.31-6.33 $\times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
(d) At this point, $\left[\mathrm{NH}_{3}\right]=\left[\mathrm{H}^{+}\right]$

Therefore $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{NH}_{4}{ }^{+}\right]}$
$\left[\mathrm{H}^{+}\right]=10^{-4.6}=2.51 \times 10^{-5}$

$$
\begin{array}{r}
K_{\mathrm{a}}=\left(2.51 \times 10^{-5}\right)^{2} / 2=3.15 \times 10^{-10}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\
\text { Allow } 3.15-3.16 \times 10^{-10}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)
\end{array}
$$

(e) When $\left[\mathrm{NH}_{3}\right]=\left[\mathrm{NH}_{4}^{+}\right], K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]$therefore $-\log K_{\mathrm{a}}=-\log \left[\mathrm{H}^{+}\right]$

Answer using alternative value

Therefore $\mathrm{pH}=-\log _{10}\left(3.15 \times 10^{-10}\right)=9.50$
$M 2 \mathrm{pH}=-\log _{10}\left(4.75 \times 10^{-9}\right)=8.32$
Allow consequential marking based on answer from part (d)
2. (a) Proton donor or H^{+}donor
(b) (i) $K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$ or $\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$

If K_{a} wrong, can only score M1 below.
Must be ethanoic acid not HA
Must have square brackets (penalise here only) but mark on in (b)(ii).
(ii) $\mathrm{M} 1\left[\mathrm{H}^{+}\right]=10^{-2.69}$ OR $2.042 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$

M2 $\left.\mathrm{CH}_{3} \mathrm{COOH}\right]=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\mathrm{~K}_{a}}$
Ignore ()
Mark for correctly rearranged expression incl $\left[\mathrm{H}^{+}\right]^{2}$

M3

$$
=\frac{\left(2.042 \times 10^{-3}\right)^{2}}{1.75 \times 10^{-5}}
$$

If M2 wrong no further marks.

M4 $\quad=0.238\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ Allow $0.229-0.24$
(c) (i) $\mathrm{ClCH}_{2} \mathrm{COOH} \rightleftharpoons \mathrm{ClCH}_{2} \mathrm{COO}^{-}+\mathrm{H}^{+}$

Allow \longrightarrow
Allow $\mathrm{ClCH}_{2} \mathrm{CO}_{2} \mathrm{H}$ and $\mathrm{ClCH}_{2} \mathrm{CO}_{2}^{-}$
(ii) M 1 Cl is (more electronegative so) withdraws electrons $O R$ negative inductive effect of Cl Ignore electronegativity.
Ignore chloroethanoic acid has a lower K_{a} value.
Allow Cl reduces +ve inductive effect of methyl group.

M2 Weakens O-H bond
$O R \mathrm{O}-\mathrm{H}$ bond is more polar
$O R$ reduces negative charge on COO^{-}
OR stabilizes COO^{-}(more)
M1 \& M2 are independent marks.
Ignore H^{+}lost more easily.
(d) (i) \mathbf{A}
(ii) C
(iii) D
(e) $\mathrm{M} 1 \mathrm{Mol} \mathrm{NaOH}=\mathrm{mol} \mathrm{OH}^{-}=\left(19.6 \times 10^{-3}\right) \times 0.720=1.41(1) \times 10^{-2}$ Mark for answer.

M2 Mol H $\mathrm{H}_{2} \mathrm{SO}_{4}=\left(26.4 \times 10^{-3}\right) \times 0.550=1.45(2) \times 10^{-2}$ Mark for answer.

M3 Mol H${ }^{+}$added $=2 \times\left(1.452 \times 10^{-2}\right)=2.90(4) \times 10^{-2}$
OR
XS mol H2 $\mathrm{SO}_{4}=7.46(4) \times 10^{-3}$
If factor $\times 2$ missed completely $(\mathrm{pH}=2.05)$
or used wrongly later, can score max 4 for M1, M2, M5 \& M6

M4 XS mol H${ }^{+}=0.0149(3)$

M5 For dividing by volume
$\left[\mathrm{H}^{+}\right]=0.0149(3) \times(1000 / 46.0)=0.324-0.325 \mathrm{~mol} \mathrm{dm}^{-3}$
If no use or wrong use of volume lose M5 and M6 ie can score 4 for $\mathrm{pH}=1.83$ (no use of vol)
Treat missing 1000 as $A E(-1)$ \& score 5 for $\mathrm{pH}=3.49$

M6 pH $=0.49$
2dp (penalise more or less).
If $\times 2$ missed \& vol not used, $\mathrm{pH}=3.39$ scores M1 \& M2 only.
3. (a) Idea that over time / after storage meter does not give accurate readings Do not accept 'to get an accurate reading' without further qualification.
Allow 'temperature variations affect reading'.
(b)

$\left[\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}(\mathrm{aq})\right]\left[\mathrm{H}^{+}(\mathrm{aq})\right]\right.$

$\left[\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})\right]$

Allow without (aq) symbols.
Need at least one set of square brackets around complex ions
(c) $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\left[\mathrm{H}^{+}\right]=0.0240$
Do not penalise precision of $\left[\mathrm{H}^{+}\right]$
Correct answer scores M1 and M2.
$K_{a}=(0.0240)^{2} / 0.1=5.75 \times 10^{-3}$ or 5.76×10^{-3}
Correct answer without working loses M1 and M2.
Allow 7.58×10^{-3}

Answer, even if incorrect, given to 3 sig figs
(d) Oxygen (in the air) / O_{2}

Ignore 'air' or 'the atmosphere' or 'chemicals in soil'.
List principle.
(e) $4.0-6.9$

Do not penalise precision.
4. (a) $\quad-\log \left[\mathrm{H}^{+}\right]$

> ecf if [] wrong and already penalised
4.57×10^{-3}
allow 4.6×10^{-3}
ignore units
(b) (i) $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{H} \times]}$ allow HA etc
not $\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HX}]}$ but mark on
If expression wrong allow conseq units in (ii) but no other marks in (ii)

1
(ii) $\begin{aligned} & \frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HX}]}=\frac{\left(4.57 \times 10^{-3}\right)^{2}}{[0.150]} \\ & \text { If use } 4.6 \times 10^{-3}\end{aligned}$
$K_{a}=1.4(1) \times 10^{-4}$ and $p K a=3.85$

$$
\begin{aligned}
& =1.39 \times 10^{-4} \\
& \quad \text { allow } 1.39-1.41 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

(iii) $p K_{\mathrm{a}}=3.86$

Penalise dp of final answer <or > 2 in pH once in paper
(c) (i) $\begin{array}{r}\frac{30}{1000}\end{array} \times 0.480=0.0144$ or $1.4(4) \times 10^{-2}$

1
(ii) $\frac{18}{1000} \times 0.350=0.0063$ or 6.3×10^{-3}

Mark is for answer (M2)
(iii) $0.0144-2(0.0063)=1.80 \times 10^{-3}$

M3 is for (i) - 2(ii)
If $x 2$ missed, CE i.e. lose M3 and the next mark gained
(iv) $1.80 \times 10^{-3} \times \frac{1000}{48}=0.0375(0.038)$

M4 is for answer
If vol is not 48×10^{-3} (unless AE) lose M4 and next mark gained If multiply by 48 - this is AE - i.e. lose only M4
If multiply by 48×10^{-3} this is AE - i.e. lose only M4
(v) $10^{-14} / 0.0375 \quad\left(10^{-14} / 0.038\right)$

M5 for $\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]$
$\left(=2.66 \times 10^{-13}\right) \quad\left(=2.63 \times 10^{-13}\right)$
or pOH
or $\mathrm{pOH}=1.426 \quad$ (or $\mathrm{pOH}=1.420$)
If no attempt to use K_{w} or pOH lose both M5 and M6
1
$\mathrm{pH}=12.57 \quad$ (12.58) M6
Allow M6 conseq on AE in M5 if method OK
5. (a) $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
(All three sets of square brackets needed, penalise missing brackets or missing charge once in the question)
(Don't penalise extra $\left[H^{+}\right]^{2} /[H A]$)
(b) $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HA} \mathrm{A}]}$ or $\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]$
$\left[\mathrm{H}^{+}\right]=\sqrt{\left(1.45 \times 10^{-4}\right) \times 0.25}$
$=6.02 \times 10^{-3} \mathrm{pH}=2.22$
(must be to 2dp)
(allow 4th mark consequential on their $\left[\mathrm{H}^{+}\right]$)
(c) (i) pH (almost) unchanged (Must be correct to score explanation)
H^{+}removed by A^{-}forming HA or acid reacts with salt or more HA formed
(ii) $\left[\mathrm{H}^{+}\right]=10^{-3.59}=2.57 \times 10^{-4}$ or 2.6×10^{-4}
$\left[\mathrm{A}^{-}\right]=\frac{\mathrm{K}_{\mathrm{a}}\left[\mathrm{HA}^{\mathrm{A}}\right]}{\left[\mathrm{H}^{+}\right]}$

$$
=\frac{\left(1.45 \times 10^{-4}\right] \times 0.25}{2.57 \times 10^{-4}}
$$

$=0.141\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
(Allow 0.139 to 0.141 and allow 0.14)
(If not used 3.59, to find $\left[\mathrm{H}^{+}\right]$can only score M2 for working)
(If 3.59 used but $\left[\mathrm{H}^{+}\right]$is wrong, can score M2 for correct method and conseq M4)
If wrong method and wrong expression, can only score M1)
1

1

1
(ii) Alternative scheme for first three marks of part (c)(ii)
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log \frac{\left[\mathrm{HA}_{\mathrm{A}}\right]}{\left[\mathrm{A}^{-}\right]}$
$\mathrm{pK}_{\mathrm{a}}=3.84$
$3.59=3.84-\log \frac{0.250}{\left[A^{-}\right]}$

