

A-Level Chemistry Weak Acids Dissociation Constant (Ka) Question Paper

Time available: 64 minutes Marks available: 62 marks

www.accesstuition.com

$$NH_4^+(aq) \rightleftharpoons NH_3(aq) + H^+(aq)$$

The following figure shows a graph of data obtained by a student when a solution of sodium hydroxide was added to a solution of ammonium chloride. The pH of the reaction mixture was measured initially and after each addition of the sodium hydroxide solution.

(a) Suggest a suitable piece of apparatus that could be used to measure out the sodium hydroxide solution.

Explain why this apparatus is more suitable than a pipette for this purpose.

Apparatus_____

Explanation _____

(b) Use information from the curve in the figure above to explain why the end point of this reaction would be difficult to judge accurately using an indicator.

(2)

(c)	The pH at the end point of this reaction is 11.8.	
	Use this pH value and the ionic product of water, $K_{\rm w} = 1.0 \times 10^{-14} \rm mol^2 dm^{-6}$, to calculate the concentration of hydroxide ions at the end point of the reaction.	
	Concentration = mol dm ⁻³	
(-1\		(3)
(d)	The expression for the acid dissociation constant for aqueous ammonium ions is	
	$\kappa_{a} = \frac{\left[NH_{3}\right]\left[H^{+}\right]}{\left[NH_{4}^{+}\right]}$	
	The initial concentration of the ammonium chloride solution was 2.00 mol dm ⁻³ .	
	Use the pH of this solution, before any sodium hydroxide had been added, to calculate a value for $\mathcal{K}_{\!a}$	
	$K_a = \underline{\hspace{1cm}} \mod dm^{-3}$	
		(3)

	Use	e your value of K_a from part (d) to calculate the pH of this solution. Explain your wo	rking.
		you were unable to calculate a value for K_a you may assume that it has the value 5×10^{-9} mol dm ⁻³ . This is not the correct value.)	
		pH =	
		(Tota	al 12 mar
This	ques	stion is about Brønsted-Lowry acids of different strengths.	
(a)	Sta	te the meaning of the term <i>Brønsted–Lowry acid</i> .	
(b)	(i)	Write an expression for the acid dissociation constant $K_{\rm a}$ for ethanoic acid.	
	(ii)	The value of K_a for ethanoic acid is 1.75 x 10 ⁻⁵ mol dm ⁻³ at 25 °C.	
		Calculate the concentration of ethanoic acid in a solution of the acid that has a p 2.69	H of

A solution contains equal concentrations of ammonia and ammonium ions.

(e)

Write an equation for the dissociation of chloroethanoic acid in aqueous solution				eous solution.
(ii) Suggest why	y chloroethanoic ac	cid is a stronger ac	cid than ethanoic a	acid.
P and Q are acids pase.	s. X and Y are base	es. The table show	s the strength of e	each acid and
Ac	cids	Bas	ses	
strong	weak	strong	weak	
Р	Q	Х	Y	
The titrations were The pH range for the pH range for the pH range for the following the following the following the indicato	re titrated separate then repeated usi methyl orange is 3. phenolphthalein is llowing titrations, so r(s) that would give in the box provide	ly with the two basing phenolphthale 1 – 4.4 8.3 – 10.0 elect the letter, A , e a precise end-po	n as indicator. B, C, or D , for the	Š
The titrations were The pH range for the pH range for the pH range for the following the following the indicato the your answere the titre to the following	e then repeated usi methyl orange is 3. phenolphthalein is llowing titrations, so r(s) that would give	ly with the two basing phenolphthale 1 – 4.4 8.3 – 10.0 elect the letter, A , e a precise end-pond.	n as indicator. B, C, or D , for the	Š
The titrations were The pH range for The pH range for The pH range for The pH range for the following the indicato Write your answer A Both indicators	e then repeated usimethyl orange is 3. phenolphthalein is llowing titrations, sor(s) that would give in the box provide	ly with the two basing phenolphthale 1 – 4.4 8.3 – 10.0 elect the letter, A , e a precise end-pond.	n as indicator. B, C, or D , for the	Š
The titrations were The pH range for each of the following the indicator answer the pour answer the purpose of the pH range for the pH range f	e then repeated usi methyl orange is 3. phenolphthalein is llowing titrations, so r(s) that would give in the box provide give a precise end-	ly with the two basing phenolphthale 1 – 4.4 8.3 – 10.0 elect the letter, A , e a precise end-podpoint. se end-point.	n as indicator. B, C, or D , for the	Š
The titrations were The pH range for the	e then repeated usimethyl orange is 3. phenolphthalein is llowing titrations, sor(s) that would give in the box provide give a precise endange gives a precise	ly with the two basing phenolphthale 1 – 4.4 8.3 – 10.0 elect the letter, A , e a precise end-post. ee end-point. ee end-point.	n as indicator. B, C, or D , for the	Š
The titrations were The pH range for the	e then repeated usimethyl orange is 3. phenolphthalein is llowing titrations, so r(s) that would give in the box provide give a precise endange gives a precise halein gives a precise or gives a precise endange gives gives a precise endange gives gives gives a precise endange gives	ly with the two basing phenolphthale 1 – 4.4 8.3 – 10.0 elect the letter, A , e a precise end-post. ee end-point. ee end-point.	n as indicator. B, C, or D , for the	Š

	(ii)	Acid Q with base X		
	(iii)	Acid Q with base Y		(1)
(e)	•	•	0.550 mol dm ⁻³ sulfuric acid were added to a conical flask mol dm ⁻³ aqueous sodium hydroxide.	(1)
		me that the sulfuric acid	· · · · · · · · · · · · · · · · · · ·	
	Calcu	ulate the pH of the solution	on formed.	
	Give	your answer to 2 decima	al places.	
				(6)
			(Total 18 mar	
	. ,		in garden lawns. It is a by-product of the manufacture of steel. sulfate, the iron(II) ions are oxidised to form iron(III) ions.	
Iron	(III) ion	s are acidic in aqueous	solution as shown by the following equation.	
		[Fe(H ₂ O) ₆] ³⁺ (aq) \implies [Fe(H ₂ O) ₅ (OH)] ²⁺ (aq) + H ⁺ (aq)	
	-	-	neter was used to measure the pH of an iron(III) salt in mol dm ⁻³ solution of iron(III) sulfate was found to be 1.62.	
(a)	Expla	ain briefly why a pH mete	er should be calibrated before use.	
	- <u></u>			
				(1)

3.

(c)	Use your answer from part (b) to calculate the value of K_a for this reaction at 20 °C Give your answer to the appropriate precision. Show your working.	C.
		_
(d)	Name the substance that is most likely to oxidise the iron(II) ions when iron(II) sulused as a weed killer.	
	Name the substance that is most likely to oxidise the iron(II) ions when iron(II) sul	
	Name the substance that is most likely to oxidise the iron(II) ions when iron(II) sul used as a weed killer.	
e)	Name the substance that is most likely to oxidise the iron(II) ions when iron(II) sulused as a weed killer. Suggest a value for the pH of a 0.100 mol dm ⁻³ solution of iron(II) sulfate. A sample of hydrochloric acid has a pH of 2.34 Write an expression for pH and calculate the concentration of this acid.	Ifate is
e)	Name the substance that is most likely to oxidise the iron(II) ions when iron(II) sulused as a weed killer. Suggest a value for the pH of a 0.100 mol dm ⁻³ solution of iron(II) sulfate. A sample of hydrochloric acid has a pH of 2.34 Write an expression for pH and calculate the concentration of this acid. pH	Ifate is
(d) (e)	Name the substance that is most likely to oxidise the iron(II) ions when iron(II) sulused as a weed killer. Suggest a value for the pH of a 0.100 mol dm ⁻³ solution of iron(II) sulfate. A sample of hydrochloric acid has a pH of 2.34 Write an expression for pH and calculate the concentration of this acid. pH	Ifate is

	Units
(iii)	Calculate the value of pK_a for the acid HX. Give your answer to two decimal places.
	$1.0~\rm cm^3$ sample of a 0.480 mol dm ⁻³ solution of potassium hydroxide was partially ralised by the addition of 18.0 cm ³ of a 0.350 mol dm ⁻³ solution of sulphuric acid.
(i)	Calculate the initial number of moles of potassium hydroxide.
(ii)	Calculate the number of moles of sulphuric acid added.
(iii)	Calculate the number of moles of potassium hydroxide remaining in excess in the solution formed.
(iv)	Calculate the concentration of hydroxide ions in the solution formed.
(v)	Hence calculate the pH of the solution formed. Give your answer to two decimal places.

Calculate the p	H of a 0.250 mol dm ⁻³ solution of HA at 298 K.
A : () ()	
A mixture of the buffer solution.	e acid HA and the sodium salt of this acid, NaA, can be used to prepar
	explain the effect on the pH of this buffer solution when a small amount acid is added.
• •	entration of HA in a buffer solution is 0.250 mol dm ⁻³ . Calculate the ation of A ⁻ in this buffer solution when the pH is 3.59

5.