

A-Level Chemistry

Equilibrium Constant (Kc)

Mark Scheme

Time available: 67 minutes Marks available: 59 marks

1. (a)

$$
K_{c}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}
$$

(b) M1: dividing by volume for SO_{2} and SO_{3} / calculation of concentrations of SO_{2} and SO_{3}
$15.0=15.0=\frac{\left(\frac{0.461}{1.80}\right)^{2}}{\left(\frac{0.176}{1.80}\right)^{2}\left[O_{2}\right]}$
Or $\left[\mathrm{SO}_{2}\right]=0.0978 \mathrm{~mol} \mathrm{dm}^{-3}$ and $\left[\mathrm{SO}_{3}\right]=0.256 \mathrm{~mol} \mathrm{dm}^{-3}$

M2: correct substitution into rearranged expression
$\left[O_{2}\right]=\frac{\left(\frac{0.461}{1.80}\right)^{2}}{\left(\frac{0.176}{1.80}\right)^{2}(15.0)}$
or
$\left[O_{2}\right]=\frac{(0.256)^{2}}{(0.0978)^{2}(15.0)}$
$\left(\left[\mathrm{O}_{2}\right]=0.457 \mathrm{~mol} \mathrm{dm}^{-3}\right)$

M3 amount of oxygen $=\left[\mathrm{O}_{2}\right] \times 1.80=0.823 \mathrm{~mol}$
At least 2sf
(c) $(\mathrm{pV}=\mathrm{nRT})$
$T=p V \div n R$
M1: rearranged expression for ideal gas equation
$\mathrm{n}=0.025+0.049+0.034$
$\mathrm{n}=0.108$
M2: total number of moles

Conversions: pressure $=255000 \mathrm{~Pa}$; volume $=0.0035 \mathrm{~m}^{3}$
M3: unit conversions
$T=\frac{255000 \times 0.0035}{8.31 \times 0.108}$

M4: temperature in K
$\mathrm{T}=994.5 \mathrm{~K}$
$\mathrm{T}=721^{\circ} \mathrm{C}$
M5: temperature in ${ }^{\circ} \mathrm{C}$ (allow 720 - 722)
$M 5=M 4-273$
2. (a) M1 $\frac{[\mathrm{CO}]^{2}\left[\mathrm{H}_{2}\right]^{4}}{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$

M2 $\mathrm{mol}^{4} \mathrm{dm}^{-12}$
M2 allow for units that are consequential on M1
(b) M1 clear attempt made to divide moles by volume to find concentrations
7.66×10^{-3} scores M1,2,3
7.66×10^{-15} scores M1,3
M1 can use 0.750 or 750 (or $75,7.5,0.075,0.0075$, etc)
1
M2 $\frac{\left[\frac{0.110}{0.750}\right]^{2}\left[\frac{0.220}{0.750}\right]^{4}}{\left[\frac{0.075}{0.750}\right]\left[\frac{0.156}{0.750}\right]}$
M2 $\frac{(0.147)^{2}(0.293)^{4}}{(0.100)(0.208)}$ or $\frac{(0.0215)(0.00740)}{(0.100)(0.208)}$
for M2 volume used must be 0.750 or 750 (if use V at this stage, then must be one of these values of V used later on)

M3 $\quad 7.66 \times 10^{-3}$
M3 ignore units
If moles are used in place of concentration
penalise M1, but M2 and M3 could score for ECF
$M 2 \frac{(0.110)^{2}(0.220)^{4}}{(0.075)(0.156)} M 32.42 \times 10^{-3}$
Allow ECF if incorrect expression for K_{c} is used
(c) M1 yield would decrease
mark each point independently
equilibrium (position) moves left / shifts left / in direction of reverse reaction to oppose increase in pressure / to reduce pressure

M2 need both parts; ignore favours reverse reaction for the first part

M3 fewer moles/molecules of gas on left hand side / fewer moles/molecules of gaseous reactants

M3 2 moles/molecules (of gas) on left hand side v 6
moles/molecules (of gas) on right hand side

M4 no effect on $K_{\text {c }}$
3. (a) Amount of Nitrogen monoxide $=1.15 \mathrm{~mol}$

Answers to min 2sf

Amount of Chlorine $=0.825 \mathrm{~mol}$
(b)

$$
K_{c}=\frac{[\mathrm{NOCl}]^{2}}{\left[\mathrm{NO}^{2}\left[\mathrm{Cl}_{2}\right]\right.}
$$

(c)

$$
\begin{aligned}
& 1.32 \times 10^{-2}=\frac{[\mathrm{NOCl}]^{2}}{[0.85 / 0.800]^{2}[0.458 / 0.800]} \\
& \text { M1 = divides mole quantities by } 0.800 \\
& {[\mathrm{NOCl}]^{2}=8.53 \times 10^{-3} \mathrm{~mol}^{2} \mathrm{dm}^{-6}} \\
& \text { M2 = evaluates }[\mathrm{NOCl}]^{2} \\
& {[\mathrm{NOCl}]=0.0924 \mathrm{~mol} \mathrm{dm}^{-3}} \\
& M 3=\sqrt{ } M 2 \\
& \mathrm{n}(\mathrm{NOCl})=0.0924 \times 0.800=0.0739 \mathrm{~mol} \\
& \text { M4 = M3 } \times 0.800 \text { (allow ecf on an incorrect volume used in M1) } \\
& \text { (answer to 2sf or more) }
\end{aligned}
$$

If no division in M1 then max 3
$M 2=4.37 \times 10^{-3}$
M3 $=0.0661 \mathrm{~mol} \mathrm{dm}^{-3}$
M4 $=0.0529 \mathrm{~mol}$

If Kc upside down then can still score 4
M1 $=$ divides mole quantities by 0.800
$M 2=48.96$
M3 $=7.00 \mathrm{~mol} \mathrm{dm}^{-3}$
M4 $=0.600 \mathrm{~mol}$

Incorrect rearrangement loses M2
4. (a) M1 no effect (on yield)

$$
C E=0 \text { if yield changes }
$$

M2 increases rate / speed of both / forward and reverse reactions equally / by the same amount

If no reference to effect on yield, could still score M2
Ignore reference to no change in position of equilibrium, and reference to lowering activation energies
M2 allow changes rate of both / forward and reverse reactions equally / by the same amount
(b) $\quad\left(K_{c}=\right) \frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{2}}$

Must be square brackets
Ignore state symbols
Ignore units
(c) M1 divides moles by volume (0.250 or $\frac{250}{1000}$)

M2 $\quad K_{c}=\frac{\frac{0.0610}{0.250}}{\left[\frac{0.340}{0.250}\right]\left[\frac{0.190}{0.250}\right]^{2}}\left(=\frac{0.244}{1.36 \times 0.76^{2}}\right)$

M3 $\quad 0.311$
Correct answer scores 3; M3 to at least 2sf (0.3106159 ...); ignore units
Allow ECF from M1 to M2 if an attempt to calculate concentration has been made by dividing by some factor of $250 \mathrm{~cm}^{3}$
Allow ECF from M2 to M3 for use of an expression containing each reagent in a correctly substituted K_{c} expression
If volume not used, then allow M3 only for 4.97 (4.96985 ... to at least 2sf)
(d) M1 $\frac{1}{\text { Answer to (c) }}=3.22$

M1 to at least 2sf (0.31 gives 3.2(258))
M1 = 1.21 if alternative answer to 8.3 used
If an error was made in 8.3, but the candidate produced an answer in 8.4 that did fit the inverted calculation from 8.3, then candidate could score M1

M2 $\mathrm{mol}^{2} \mathrm{dm}^{-6}$
(if volumes are not used, then candidate would get 0.20(12.)
5. (a) Initial amount of $A=6.4 \times 10^{-3}$ If M1 wrong can score max 3

Equ $\mathrm{A}=6.4 \times 10^{-3}-2 \mathrm{x} \therefore \mathrm{x}=1.25 \times 10^{-3}$
If incorrect x can score max 3
$B=9.5 \times 10^{-3}-x=8.25 \times 10^{-3}$
Allow 2 or more sig figs

$$
C=2.8 \times 10^{-2}+3 x=0.0318
$$

$D=x=1.25 \times 10^{-3}$
(b) $\quad K_{\mathrm{c}}=\frac{[C]^{3}[D]}{[A]^{2}[B]}$

Penalise () but mark on in (b) \& (c)

Units $=\mathrm{mol} \mathrm{dm}^{-3}$
If K_{c} wrong no mark for units
(c) M 1 for correct rearrangement $[A]^{2}=\frac{[C]^{3}[D]}{K_{c}[B]}$ or $[A]=\sqrt{\frac{[C]^{3}[D]}{K_{c}[B]}}$

If K_{c} wrong in (b) can score 1 for dividing by correct volume

M2 for division of mol of B, C and D by correct volume
If K_{c} correct but incorrect rearrangement can score
1 for dividing by correct volume
$[A]^{2}=\frac{\left[^{1.05]} / 0.5\right]^{3}[0.076 / 0.5]}{116 \times\left[\left[^{0.21 / 0.5}\right]\right.}$
M3 for final answer: $[\mathrm{A}]=\underline{0.17}$ (must be 2 sfs)
(d) (All) conc fall: (ignore dilution)

$$
O R K_{c}=\text { mole ratio } \times 1 / V
$$

Equm moves to side with more moles
If vol increases, mole ratio must increase

To oppose the decrease in conc
To keep K_{c} constant
If only conc of A falls $C E=0$
If pressure falls $C E=0$
6. (a) $\quad \mathrm{mol} \mathrm{R}=2 x$

1
(b) $3.6=\frac{(2 x)^{2}}{(1-x)^{2}}$

M1 can be awarded for the insertion of their answer from (a) correctly
$\sqrt{ } 3.6=\frac{2 x}{1-x} \quad$ (only positive root to be used) M2 can be awarded if their expression is expanded
$\sqrt{ } 3.6-\sqrt{ } 3.6 x=2 x$
$1.9=3.9 x$
$X=0.49$
$[\mathrm{R}]=0.97 \mathrm{~mol} \mathrm{dm}^{-3}$ (allow range $0.97-.098$)
M3 solve for x from their expression in M1 and use it to calculate [R]
7. (a)

Allow $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{OOCCH}_{3}$ OR $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{OCOCH}_{3}$ OR

(b) $\mathrm{Mol} \mathrm{HOCH} 2 \mathrm{CH}_{2} \mathrm{OH}=6.00 \times 10^{-2}$ OR 0.06(00)

Mol C ${ }_{6} \mathrm{H}_{10} \mathrm{O}_{4} \quad=1.45 \times 10^{-1}$ OR 0.145

Mol $\mathrm{H}_{2} \mathrm{O} \quad=2.90 \times 10^{-1}$ OR 0.29(0)
(c)

$$
\left(K_{\mathrm{c}}=\right) \frac{[\text { ester }] \times\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]^{2} \times\left[\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right]}
$$

Allow words for acid and alcohol

The volume cancels out (Penalise a contradictory justification from expression if the volumes do not cancel out)
OR
there are equal no of moles on each side of the equation
OR
there are equal no of molecules on each side of the equation
(d)
$\left(\mathrm{Mol} \mathrm{CH}_{3} \mathrm{COOH} / V\right)^{2}=\frac{\left(8.02 \times 10^{-1} / \mathrm{V}\right)(1.15 / \mathrm{V})^{2}}{6.45 \times\left(2.64 \times 10^{-1} / \mathrm{V}\right)}$
$\mathrm{Mol} \mathrm{CH} 33 \mathrm{COOH}=\sqrt{\frac{\left(8.02 \times 10^{-1}\right) \times(1.15)^{2}}{6.45 \times\left(2.64 \times 10^{-1}\right)}}=\sqrt{0.623}$
Mol $\mathrm{CH}_{3} \mathrm{COOH}=0.789 \quad$ (must be 3 sfs) \quad Allow $0.788-0.790$
0.789 scores 3

Allow without $V:\left(n \mathrm{CH}_{3} \mathrm{COOH}\right)^{2}=\frac{\left(8.02 \times 10^{-1}\right)(1.15)^{2}}{6.45 \times\left(2.64 \times 10^{-1}\right)}$
If $\left(\mathrm{nCH}_{3} \mathrm{COOH}\right)^{2}=0.623$ then award M1 and M2
If K_{C} is correct in (c) but incorrect rearrangement, then $C E=0$ except if upside down rearrangement then M3 only awarded for 1.27

If K_{C} is incorrect in (c) then only M1 can be awarded for correct rearrangement.

