

A-Level Chemistry

Equilibrium Constant (Kc)

Mark Scheme

Time available: 67 minutes Marks available: 59 marks

www.accesstuition.com

Mark schemes

(a)

1.

$$K_c = \frac{[SO_3]^2}{[SO_2]^2[O_2]}$$

(b) M1: dividing by volume for SO $_2$ and SO $_3$ / calculation of concentrations of SO $_2$ and SO $_3$

$$15.0 = 15.0 = \frac{(\frac{0.461}{1.80})^2}{(\frac{0.176}{1.80})^2}[o_2]$$

Or $[SO_2]$ = 0.0978 mol dm $^{-3}$ and $[SO_3]$ = 0.256 mol dm $^{-3}$

1

1

1

1

M2: correct substitution into rearranged expression

$$[O_2] = \frac{(\frac{0.461}{1.80})^2}{\left(\frac{0.176}{1.80}\right)^2 (15.0)}$$

or

$$[O_2] = \frac{(0.256)^2}{(0.0978)^2(15.0)}$$

$$([O_2] = 0.457 \text{ mol dm}^{-3})$$

M3 amount of oxygen = $[O_2] \times 1.80 = 0.823$ mol At least 2sf

www.accesstuition.com

(c)	(pV = nRT)	
	T = pV ÷ nR M1: rearranged expression for ideal gas equation	1
	n = 0.025 + 0.049 + 0.034	
	n = 0.108 M2: total number of moles	1
	Conversions: pressure = 255000 Pa ; volume = 0.0035 m ³ M3: unit conversions	1
	$T = \frac{255000 \times 0.0035}{8.31 \times 0.108}$	1
	M4: temperature in K	
	T = 994.5 K	
	T = 721 °C M5: temperature in °C (allow 720 – 722) M5 = M4 – 273	1
(a)	M1 $\frac{[CO]^2 [H_2]^4}{[C_2H_5OH] [H_2O]}$	

M2 mol⁴ dm⁻¹²

2.

M2 allow for units that are consequential on M1

[9]

1

1

(b) M1 clear attempt made to divide moles by volume to find concentrations

7.66 x 10⁻³ scores **M1,2,3**

7.66 x 10⁻¹⁵ scores **M1,3**

M1 can use 0.750 or 750 (or 75, 7.5, 0.075, 0.0075, etc)

M2
$$\frac{\left[\frac{0.110}{0.750}\right]^2 \left[\frac{0.220}{0.750}\right]^4}{\left[\frac{0.075}{0.750}\right] \left[\frac{0.156}{0.750}\right]}$$

$$M2 \frac{(0.147)^2 (0.293)^4}{(0.100) (0.208)} \text{ or } \frac{(0.0215) (0.00740)}{(0.100) (0.208)}$$

for **M2** volume used must be 0.750 or 750 (if use V at this stage, then must be one of these values of V used later on)

1

1

1

M3 7.66 x 10⁻³ M3 ignore units If moles are used in place of concentration

3.

penalise M1, but M2 and M3 could score for ECF

$$M2 \frac{(0.110)^2 (0.220)^4}{(0.075) (0.156)} M3 2.42 \times 10^{-3}$$

Allow ECF if incorrect expression for K_c is used

(c)	M1	yield would decrease mark each point independently	1	
	M2	equilibrium (position) moves left / shifts left / in direction of reverse reaction	•	
		to oppose increase in pressure / to reduce pressure <i>M2</i> need both parts; ignore favours reverse reaction for the first part	1	
	М3	fewer moles/molecules of gas on left hand side / fewer moles/molecules of gaseous reactants	1	
		M3 2 moles/molecules (of gas) on left hand side v 6 moles/molecules (of gas) on right hand side	1	
	Μ4	no effect on $K_{\rm c}$	1	
(a)	Amo	unt of Nitrogen monoxide = 1.15 mol		[9]
		Answers to min 251 1		
	Amc	ount of Chlorine = 0.825 mol		

www.accesstuition.com

(c)

$$K_c = \frac{[\text{NOCl}]^2}{[\text{NO}]^2[\text{Cl}_2]}$$

1

$1.32 \times 10^{-2} = \frac{[\text{NOCI}]^2}{\left[\frac{0.85}{0.800}\right]^2 \left[\frac{0.458}{0.800}\right]}$			
M1 = divides mole quantities by 0.800	1		
$[NOCI]^2 = 8.53 \times 10^{-3} \text{ mol}^2 \text{dm}^{-6}$			
$M2 = evaluates [NOCI]^2$	1		
$[NOCI] = 0.0924 \text{ mol dm}^{-3}$			
$M3 = \sqrt{M2}$	1		
$n(NOCI) = 0.0924 \times 0.800 = 0.0739 \text{ mol}$ $M4 = M3 \times 0.800$ (allow ecf on an incorrect volume used in M1)			
(answer to 2sf or more)			
If no division in M1 then max 3			
$M2 = 4.37 \times 10^{-3}$			
$M3 = 0.0661 \text{ mol } dm^{-3}$			
M4 = 0.0529 mol			
If Kc upside down then can still score 4			
M1 = divides mole quantities by 0.800			
M2 = 48.96			
$M3 = 7.00 \text{ mol } dm^{-3}$			
M4 = 0.600 mol			
Incorrect rearrangement loses M2			

[7]

(a)

M1 no effect (on yield)

CE = 0 if yield changes

M2 increases rate / speed of both / forward and reverse reactions <u>equally / by the same</u> <u>amount</u>

> If no reference to effect on yield, could still score **M2** Ignore reference to no change in position of equilibrium, and reference to lowering activation energies **M2** allow changes rate of both / forward and reverse reactions equally / by the same amount

(b)
$$(K_c =) \frac{[CH_3OH]}{[CO][H_2]^2}$$

Must be square brackets Ignore state symbols Ignore units

(c) M1 divides moles by volume (0.250 or
$$\frac{250}{1000}$$
)

M2
$$K_c = \frac{\frac{0.0610}{0.250}}{\left[\frac{0.340}{0.250}\right]^{\left[\frac{0.190}{0.250}\right]^2}} \left(=\frac{0.244}{1.36 \times 0.76^2}\right)$$

M3 0.311

Correct answer scores 3; **M3** to at least 2sf (0.3106159 ...); ignore units Allow ECF from **M1** to **M2** if an attempt to calculate concentration

has been made by dividing by some factor of 250 cm³

Allow ECF from **M2** to M3 for use of an expression containing each reagent in a correctly substituted K_c expression

If volume not used, then allow M3 only for 4.97 (4.96985 ... to at least 2sf)

1

1

1

1

1

	(d)	M1	$\frac{1}{Answer \ to \ (c)} = 3.22$		
			M1 to at least 2sf (0.31 gives 3.2(258))		
			M1 = 1.21 if alternative answer to 8.3 used		
			If an error was made in 8.3, but the candidate produced an answer in 8.4 that did fit the inverted calculation from 8.3, then candidate could score M1	1	
		M2 r	mol ² dm ⁻⁶		
			(if volumes are not used, then candidate would get 0.20(12.)	1	[8]
	(\mathbf{a})		amount of $\Lambda = 6.4 \times 10^{-3}$		[0]
5.	(a)	millar	$\int M1 wrong con score max 2$		
			In With Wrong can score max s	M1	
		Equ A	$x = 6.4 \times 10^{-3} - 2x \therefore x = 1.25 \times 10^{-3}$		
		·	If incorrect x can score max 3		
				M2	
		B = 9.	$5 \times 10^{-3} - x = 8.25 \times 10^{-3}$		
			Allow 2 or more sig figs		
				M3	
		C = 2.	$8 \times 10^{-2} + 3x = 0.0318$		
				M4	
		D = x	$= 1.25 \times 10^{-3}$		
				М5	
	(b)	K _c = [<u>C]³[D]</u>		
		L.			
			Penalise () but mark on in (b) & (c)	1	
				-	
		Units :	= mol dm ⁻³		
			$n n_c$ wrong no mark for units	1	

	(c)	M1 for correct rearrangement $[A]^2 = \frac{[C]^3[D]}{K_c[B]}$ or $[A] = \sqrt{\frac{[C]^3[D]}{K_c[B]}}$		
		If K _c wrong in (b) can score 1 for dividing by correct volume		
			M1	
		M2 for division of mol of B, C and D by correct volume		
		If K _c correct but incorrect rearrangement can score		
		1 for dividing by correct volume		
			M2	
		$[A]^{2} = \frac{\left[\frac{1.05}{0.5}\right]^{3} \left[\frac{0.076}{0.5}\right]}{116 \times \left[\frac{0.21}{0.5}\right]}$		
		M3 for final answer: $[A] = 0.17$ (must be 2 sfs)	М3	
	(d)	(All) conc fall: (ignore dilution)		
	()	$OR K_c = mole ratio \times 1/V$		
			1	
		Equm moves to side with more moles		
		If vol increases, mole ratio must increase		
			1	
		To oppose the decrease in conc		
		To keep K _c constant		
		If only conc of A falls CE=0		
		If pressure falls CE=0		
			1	
			[′	13]
6.	(a)	mol R = $2x$		
			1	

(b)
$$3.6 = \frac{(2x)^2}{(1-x)^2}$$

 $\sqrt{3.6} - \sqrt{3.6} x = 2x$

 $[R] = 0.97 \text{ mol } dm^{-3} \text{ (allow range } 0.97-.098)$

1.9 = 3.9xX = 0.49

7

M1 can be awarded for the insertion of their answer from (a) correctly

$$\sqrt{3.6} = \frac{2x}{1-x}$$
 (only positive root to be used)
M2 can be awarded if their expression is expanded

M3 solve for x from their expression in M1 and use it to calculate [R]

1

1

1

(a)	0				
	H ₃ C O CH ₂				
Allow $CH_3COOCH_2CH_2OOCCH_3$					
	$OR CH_3COOCH_2CH_2OCOCH_3$				
	OR				
			1		
(b)	Mol HOCH ₂ CH ₂ OH	= 6.00 × 10 ⁻² OR 0.06(00)	1		
	$Mol C_6H_{10}O_4$	= 1.45 × 10 ⁻¹ OR 0.145	1		
	Mol H ₂ O	= 2.90 × 10 ⁻¹ OR 0.29(0)	1		
	(a) (b)	(a) $ \begin{array}{c} $	(a) $H_{3}C + CH_{2} + CH_{2} + CH_{3} + CH_{3} + CH_{3} + CH_{3} + CH_{3} + CH_{3} + COCH_{3} + CH_{3} + CH_{3}$		

$$(K_{c} =) \frac{[ester] \times [H_{2}O]^{2}}{[CH_{3}COOH]^{2} \times [HOCH_{2}CH_{2}OH]}$$
Allow words for acid and alcohol
The volume cancels out (Penalise a contradictory justification
from expression if the volumes do not cancel out)

OR there are <u>equal no of moles on each side of the equation</u> <u>OR</u> there are <u>equal no of molecules on each side of the equation</u>

(d)

(C)

$$(M \text{ ol } CH_3 COOH / V)^2 = \frac{(8.02 \times 10^{-1} / V)(1.15 / V)^2}{6.45 \times (2.64 \times 10^{-1} / V)}$$

Mol CH₃COOH =
$$\sqrt{\frac{(8.02 \times 10^{-1}) \times (1.15)^2}{6.45 \times (2.64 \times 10^{-1})}} = \sqrt{0.623}$$

Mol CH₃COOH = 0.789 (must be 3 sfs) Allow 0.788 – 0.790 M3

0.789 scores 3

Allow without V :
$$(nCH_3COOH)^2 = \frac{(8.02 \times 10^{-1})(1.15)^2}{6.45 \times (2.64 \times 10^{-1})}$$

If $(nCH_3COOH)^2 = 0.623$ then award M1 and M2

If K_c is correct in (c) but incorrect rearrangement, then CE=0 except if upside down rearrangement then M3 only awarded for 1.27

If K_c is incorrect in (c) then only M1 can be awarded for correct rearrangement.

[9]

1

1

M1

M2