

 A-Level Chemistry

 A-Level Chemistry
 Equilibrium Constant (Kc)

Question Paper

Time available: 67 minutes Marks available: 59 marks

1. Sulfur dioxide reacts with oxygen to form sulfur trioxide.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta H=-196 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(a) Give an expression for the equilibrium constant $\left(K_{\mathrm{c}}\right)$ for this reaction.
K_{c}
(b) A mixture of sulfur dioxide and oxygen is allowed to reach equilibrium in a container of volume $1800 \mathrm{~cm}^{3}$ at temperature T.

At equilibrium, the mixture contains 0.176 mol of sulfur dioxide and 0.461 mol of sulfur trioxide.

At temperature T the equilibrium constant, $K_{\mathrm{c}}=15.0 \mathrm{~mol}^{-1} \mathrm{dm}^{3}$
Calculate the amount, in moles, of oxygen at equilibrium.
\qquad mol
(c) At a different temperature, a mixture contains
0.025 mol of sulfur dioxide
0.049 mol of oxygen
0.034 mol of sulfur trioxide.

The total pressure of the mixture in a $3500 \mathrm{~cm}^{3}$ reaction vessel is 255 kPa
Use the data to calculate the temperature, in ${ }^{\circ} \mathrm{C}$, of the mixture.
The ideal gas constant, $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
2. Hydrogen gas can be made by reacting ethanol with steam in the presence of a catalyst.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

(a) Give an expression for K_{c} for this equilibrium.

State its units.

Kc

Units of K_{c} \qquad
(b) The table shows the amount of each substance in an equilibrium mixture in a container of volume $750 \mathrm{~cm}^{3}$

Substance	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$\mathrm{CO}(\mathrm{g})$	$\mathrm{H}_{2}(\mathrm{~g})$
Amount of substance / mol	0.0750	0.156	0.110	0.220

Calculate K_{c}

Kc \qquad
(c) The pressure of the equilibrium mixture was increased by reducing the volume of the container at constant temperature.

Predict the effect of increasing the pressure on the equilibrium yield of hydrogen. Explain your answer.

Predict the effect of increasing the pressure on the value of K_{c}
Effect on equilibrium yield of hydrogen \qquad
\qquad
Explanation \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Effect on value of K_{c} \qquad
\qquad
(Total 9 marks)
3. Nitrogen monoxide reacts with chlorine to form nitrosyl chloride (NOCI).

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{~g})
$$

(a) 1.50 mol of NO are mixed with 1.00 mol of Cl_{2} and the mixture is left to reach equilibrium at a given temperature.
The equilibrium mixture contains 0.350 mol of NOCl
Calculate the amount, in moles, of NO and of Cl_{2} in the equilibrium mixture.

$$
\begin{aligned}
& \text { Amount of } \mathrm{NO}_{2} \mathrm{~mol} \\
& \text { Amount of } \mathrm{Cl}_{2} \\
& \mathrm{~mol}
\end{aligned}
$$

(b) Give the expression for the equilibrium constant, K_{c}, for the reaction between nitrogen monoxide and chlorine to form nitrosyl chloride.
$K_{\mathrm{c}}=$
(c) A different equilibrium mixture is prepared in a flask of volume $800 \mathrm{~cm}^{3}$ at a different temperature.
At equilibrium this mixture contains 0.850 mol of NO and 0.458 mol of Cl_{2}
For the reaction at this temperature $K_{\mathrm{c}}=1.32 \times 10^{-2} \mathrm{~mol}^{-1} \mathrm{dm}^{3}$
Determine the amount, in moles, of NOCI in this equilibrium mixture.
\qquad mol
4. Methanol can be manufactured in a reversible reaction as shown by the equation.

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

(a) State and explain the effect of using a catalyst on the yield of methanol in this equilibrium.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Give an expression for the equilibrium constant $\left(K_{\mathrm{c}}\right)$ for this reaction.
(c) A mixture of carbon monoxide and hydrogen was allowed to reach equilibrium in a container of volume $250 \mathrm{~cm}^{3}$ at temperature T.

At equilibrium, the mixture contained 0.340 mol of carbon monoxide, 0.190 mol of hydrogen and 0.0610 mol of methanol.

Calculate the value of the equilibrium constant $\left(K_{\mathrm{c}}\right)$ for this reaction at temperature T.

$$
K_{\mathrm{c}} \ldots \mathrm{~mol}^{-2} \mathrm{dm}^{6}
$$

(d) Methanol decomposes on heating in a reaction that is the reverse of that used in its manufacture.

$$
\mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})
$$

Use your answer from part (c) to determine the value of K_{c} for this equilibrium at temperature T.
State the units for this value of K_{c}
(If you were unable to complete the calculation in part (c), assume a value of $K_{\mathrm{c}}=0.825 \mathrm{~mol}^{-2} \mathrm{dm}^{6}$. This is not the correct value.)

Value of K_{c} \qquad

Units of K_{c} \qquad
5. Compounds \mathbf{A} and \mathbf{B} react together to form an equilibrium mixture containing compounds \mathbf{C} and D according to the equation

$$
2 \mathbf{A}+\mathbf{B} \rightleftharpoons 3 \mathbf{C}+\mathbf{D}
$$

(a) A beaker contained $40 \mathrm{~cm}^{3}$ of a $0.16 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solution of A.
$9.5 \times 10^{-3} \mathrm{~mol}$ of \mathbf{B} and $2.8 \times 10^{-2} \mathrm{~mol}$ of \mathbf{C} were added to the beaker and the mixture was left to reach equilibrium.
The equilibrium mixture formed contained $3.9 \times 10^{-3} \mathrm{~mol}$ of \mathbf{A}.
Calculate the amounts, in moles, of \mathbf{B}, \mathbf{C} and \mathbf{D} in the equilibrium mixture.

Amount of B \qquad mol Amount of \mathbf{C} \qquad mol

Amount of D \qquad mol
(b) Give the expression for the equilibrium constant $\left(K_{\mathrm{c}}\right)$ for this equilibrium and its units.
K_{c}

Units \qquad
(c) A different equilibrium mixture of these four compounds, at a different temperature, contained 0.21 mol of $\mathbf{B}, 1.05 \mathrm{~mol}$ of \mathbf{C} and 0.076 mol of \mathbf{D} in a total volume of $5.00 \times 10^{2} \mathrm{~cm}^{3}$ of solution.
At this temperature the numerical value of K_{c} was 116
Calculate the concentration of \mathbf{A}, in $\mathrm{mol} \mathrm{dm}^{-3}$, in this equilibrium mixture.
Give your answer to the appropriate number of significant figures.

Concentration of \mathbf{A} \qquad $\mathrm{mol} \mathrm{dm}{ }^{-3}$
(d) Justify the statement that adding more water to the equilibrium mixture in part (c) will lower the amount of \mathbf{A} in the mixture.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
6. When substances \mathbf{P} and \mathbf{Q} react together to form substance \mathbf{R} an equilibrium is established according to the equation

$$
\mathrm{P}(\mathrm{~g})+\mathrm{Q}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{R}(\mathrm{~g})
$$

The equilibrium constant expression is $K_{C}=\frac{[R]^{2}}{[P][Q]}$
1.0 mol of \mathbf{P} and 1.0 mol of \mathbf{Q} were mixed in a container with volume $1.0 \mathrm{dm}^{3}$

At equilibrium, \boldsymbol{x} mol of \mathbf{P} had reacted.
(a) The amount, in moles, of each of P and Q at equilibrium is $(1-x)$.

Deduce in terms of \boldsymbol{x} the amount, in moles, of \mathbf{R} in the equilibrium mixture.
(b) At 298 K the value of the equilibrium constant $K_{C}=3.6$

Calculate a value for the equilibrium concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of \mathbf{R}.
\qquad $\mathrm{mol} \mathrm{dm}^{-3}$
7. Ethanoic acid and ethane-1,2-diol react together to form the diester $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}\right)$ as shown.

$$
2 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})+\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{I}) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}(\mathrm{I})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

(a) Draw a structural formula for the diester $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$
(b) A small amount of catalyst was added to a mixture of 0.470 mol of ethanoic acid and 0.205 mol of ethane-1,2-diol.

The mixture was left to reach equilibrium at a constant temperature.
Complete Table 1.

Table 1

Amount in the mixture / mol				
	$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$	$\mathrm{H}_{2} \mathrm{O}$
At the start	0.470	0.205	0	0
At equilibrium	0.180			

Space for working
(c) Write an expression for the equilibrium constant, K_{c}, for the reaction.

The total volume of the mixture does not need to be measured to allow a correct value for K_{C} to be calculated.

Justify this statement.
Expression

Justification \qquad
\qquad
(d) A different mixture of ethanoic acid, ethane-1,2-diol and water was prepared and left to reach equilibrium at a different temperature from the experiment in part (b)

The amounts present in the new equilibrium mixture are shown in Table 2.
Table 2

Amount in the mixture / mol					
	$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$	$\mathrm{H}_{2} \mathrm{O}$	
At new equilibrium	To be calculated	0.264	0.802	1.15	

The value of K_{c} was 6.45 at this different temperature.
Use this value and the data in Table 2 to calculate the amount, in mol, of ethanoic acid present in the new equilibrium mixture.

Give your answer to the appropriate number of significant figures.

Amount of ethanoic acid \qquad mol
(Total 9 marks)

