

## **A-Level Chemistry**

## **Kp Equilibrium Constant**

## **Mark Scheme**

Time available: 64 minutes Marks available: 57 marks

www.accesstuition.com

## Mark schemes

| 1. | (a) | M1 decreases yield                                                                                                      | 1    |
|----|-----|-------------------------------------------------------------------------------------------------------------------------|------|
|    |     | M2 So equilibrium shifts to side with more moles/molecules or more moles/molecules on LHS<br>Allow M2 independent of M1 | 1    |
|    |     | M3 So equilibrium shifts (to left side) to oppose decrease in pressure <b>OR</b> to increase pressure                   |      |
|    |     | Must refer to equilibrium shifting to gain maximum marks                                                                | 1    |
|    | (b) | M1 amount $SO_2 (= 0.46 - 0.18) = 0.28 \text{ mol}$                                                                     | 1    |
|    |     | M2 amount $O_2 (= 0.25 - 0.09) = 0.16$ mol                                                                              | 1    |
|    |     | M3 total amount (= $0.28 + 0.16 + 0.18$ ) = $0.62$ mol                                                                  | 1    |
|    |     | M4 partial pressure of SO <sub>2</sub> = $\frac{0.28}{0.62}$ x 215 = 97(.1) (kPa)                                       |      |
|    |     | $M4 = \frac{M1}{M3} \times 215$                                                                                         | 1    |
|    | (c) | M1 $\frac{K_p = \frac{(pp SO_3)^2}{(pp SO_2)^2 \times pp O_2}}{(pp SO_2)^2 \times pp O_2}$                              |      |
|    |     | Penalise square brackets in M1                                                                                          | 1    |
|    |     | $M2 = 1.2(0) \times 10^{-2}$                                                                                            | 1    |
|    |     | $M3 = kPa^{-1}$                                                                                                         | 1    |
|    | (d) | Stays the same                                                                                                          | 1    |
|    |     |                                                                                                                         | [11] |



(e) M1 No effect

3.

M2 Increases <u>rate</u> of forward and backward reaction equally/by the same amount OR catalyst does not affect position of equilibrium

M2 Allow Catalyst does not appear in the K<sub>p</sub> expression
M2 Allow Only temperature affects Kp
Ignore Catalysts increase the rate of reaction or rate at which equilibrium is reached 1

(a) Moles SO<sub>2</sub> eqbm (=6.08/64.1 = 0.0949) so moles O<sub>2</sub> eqbm = 0.0474

Mass of oxygen (= 0.0474 <u>× 32(.0)</u>) = 1.52 g *Allow 0.0475 Allow M1 × 32* 

(b) **M1**: Mole fraction  $SO_3 = 0.15$ Mole fraction  $SO_2 = 0.57$ Mole fraction  $O_2 = 0.28$ Accept fractions for **M1** 

M2 
$$K_p = \frac{(pSO_2)^2 x (pO_2)}{(pSO_3)^2}$$
  $(= \frac{(\lambda SO_2)^2 P^2 x (\lambda O_2) P}{(\lambda SO_3)^2 P^2})$   
Do not accept []  
 $\lambda = mole \ fraction$ 

M3 
$$P = \frac{K_p x (\lambda SO_3)^2}{(\lambda SO_2)^2 x (\lambda O_2)}$$
 or  $\frac{K_p x (0.15)^2}{(0.57)^2 x (0.28)}$ 

**M4** P =  $1.91 \times 10^5$  (Pa) Allow range  $1.88 \times 10^5$  to  $1.94 \times 10^5$ 

(c) M1 Kp is higher at higher temperature or converse

**M2** At higher temperature more dissociation occurs / more products are formed / equilibrium shifts to the right/forward direction

M2: Allow converse arguments M2 dependent on M1

1

1

1

1

1

1

1

1

1

1

[11]

4.

|      | Pa <sup>1/2</sup> or Pa <sup>0.5</sup>                                                              |      |
|------|-----------------------------------------------------------------------------------------------------|------|
|      | Allow 198 – 198.5 (answer is 198.49)                                                                |      |
|      | If $\sqrt{7.62 \times 10^5}$ = 873 then lose <b>M1</b> but allow <b>M2</b>                          |      |
|      |                                                                                                     | 1    |
|      |                                                                                                     | [10] |
| (a)  | pp nitrogen = 0.25 × 30 = <u>7.5</u> kPa                                                            |      |
|      |                                                                                                     | 1    |
|      | pp hydrogen = 0.75 × 30 = <u>22.5 or 23</u> kPa                                                     |      |
|      |                                                                                                     | 1    |
|      | pp of ammonia = 0.8 × 150 = <u>120</u> kPa                                                          |      |
|      |                                                                                                     | 1    |
|      | (pp hydrogen + nitrogen = 150-120 = 30 kPa)                                                         |      |
|      | Alternative method                                                                                  |      |
|      | pp hydrogen = 0.15 × 150 = <u>22.5 or 23</u> kPa                                                    |      |
|      | $pp \ nitrogen = 0.05 \times 150 = 7.5 \ kPa$                                                       |      |
| (b)  | $K_p = (ppNH_3)^2$                                                                                  |      |
| ( )  | $(ppN_2) \times (ppH_2)^3$                                                                          |      |
|      | Penalise [ ]                                                                                        |      |
|      |                                                                                                     | 1    |
| (c)  | $K = (1.10 + 10^3)^2$                                                                               |      |
| (0)  | $K_{p} = \frac{(1.10 \times 10^{3})^{2}}{(1.50 \times 10^{2})^{3} \times 1.20 \times 10^{2}}$       |      |
|      | No mark for this expression                                                                         |      |
|      |                                                                                                     | 1    |
|      | = 0.0029 to 0.003(0) or $2.9 \times 10^{-3}$ to $3(.0) \times 10^{-3}$                              |      |
|      | kPa <sup>-2</sup>                                                                                   |      |
|      | If expression inverted in 02.2 allow 1 mark for $kPa^2$                                             |      |
|      | Allow 2.9 to 3(.0) × $10^{-9}$ Pa <sup>-2</sup>                                                     |      |
|      | Allow 2.9 to $3(.0) \times 10^{-5}$ Pa =                                                            | 1    |
| (-1) |                                                                                                     |      |
| (d)  | decrease/smaller/lower                                                                              |      |
|      | If increase or no change, 0 marks                                                                   |      |
|      | If blank, mark on                                                                                   | 1    |
|      |                                                                                                     |      |
|      | (Reaction/equilibrium) <u>shifts/moves/goes</u> in the endothermic direction (which is to the left) |      |
|      | Allow reaction is exothermic so equilibrium moves to the left side                                  | 1    |
|      |                                                                                                     | •    |
|      | to reduce the temperature OR oppose the increase in temperature                                     | 1    |
|      |                                                                                                     | 1    |

```
www.accesstuition.com
```

[9]

1

| 5. | (a) | Bonds broken = 2(C=O) + 3(H–H) = 2 × 743 + 3 × H–H                                                                   |   |
|----|-----|----------------------------------------------------------------------------------------------------------------------|---|
| J. |     | Bonds formed = 3(C–H) +(C–O) + 3(O–H) = 3 × 412 + 360 + 3 × 463<br>Both required                                     | 1 |
|    |     | -49 = [2 × 743 + 3 × (H–H)] – [3 × 412 + 360 + 3 × 463]                                                              |   |
|    |     | 3(H–H) = –49 – 2 × 743 + [3 × 412 + 360 + 3 × 463] = 1450<br>Both required                                           | 1 |
|    |     | H–H = 483 (kJ mol <sup>-1</sup> )<br>Allow 483.3(3)                                                                  | 1 |
|    | (b) | Mean bond enthalpies are not the same as the actual bond enthalpies in $\rm CO_2$ (and / or methanol and / or water) | 1 |
|    | (c) | The carbon dioxide (produced on burning methanol) is used up in this reaction                                        | 1 |
|    | (d) | 4 mol of gas form 2 mol                                                                                              | 1 |
|    |     | At high pressure the position of equilibrium moves to the right to lower the pressure / oppose the high pressure     | 1 |
|    |     | This increases the yield of methanol                                                                                 | 1 |
|    | (e) | Impurities (or sulfur compounds) block the active sites<br>Allow catalyst poisoned                                   | 1 |
|    | (f) | Stage 1: moles of components in the equilibrium mixture <i>Extended response question</i>                            | 1 |
|    |     | $CO_2(g)$ + $3H_2(g) \rightleftharpoons CH_3OH(g)$ + $H_2O(g)$                                                       |   |
|    |     | Initial 1.0 3.0 0 0 moles                                                                                            |   |
|    |     | Eqm $(1-0.86)$ $(3-3\times0.86)$ 0.86 0.86<br>moles = 0.14 = 0.42                                                    |   |
|    |     |                                                                                                                      | 1 |

| Stage 2: Partial pressure calculations                                                                                                                                                             |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Total moles of gas = 2.28                                                                                                                                                                          |           |
| Partial pressures = mol fraction × $p_{total}$                                                                                                                                                     | 1         |
| $p_{CO2}$ = mol fraction × $p_{total}$ = 0.14 × 500 / 2.28 = 30.7 kPa                                                                                                                              |           |
| $p_{H2}$ = mol fraction × $p_{total}$ = 0.42 × 500 / 2.28 = 92.1 kPa<br>M3 is for partial pressures of both reactants<br>Alternative M3 =<br>$pp_{C02}$ = 0.0614 × 500<br>$pp_{H2}$ = 0.1842 × 500 |           |
| $p_{CH3OH}$ = mol fraction × $p_{total}$ = 0.86 × 500 / 2.28 = 188.6 kPa                                                                                                                           | 1         |
| $p_{H2O}$ = mol fraction × $p_{total}$ = 0.86 × 500 / 2.28 = 188.6 kPa<br>M4 is for partial pressures of both products<br>Alternative M4 =<br>$pp_{CH3OH}$ = 0.3772 × 500                          |           |
| $pp_{H2O} = 0.3772 \times 500$                                                                                                                                                                     | 1         |
| Stage 3: Equilibrium constant calculation<br>$K_p = p_{CH3OH} \times p_{H2O} / p_{CO2} \times (p_{H2})^3$                                                                                          | 1         |
| Hence $K_p = 188.6 \times 188.6 / 30.7 \times (92.1)^3 = 1.483 \times 10^{-3} = 1.5 \times 10^{-3}$<br>Answer must be to 2 significant figures                                                     |           |
|                                                                                                                                                                                                    | 1         |
| Units = $\underline{kPa}^{-2}$                                                                                                                                                                     | 1<br>[16] |