

A-Level Chemistry

Kp Equilibrium Constant

Mark Scheme

Time available: 64 minutes Marks available: 57 marks

Mark schemes

1. (a) M1 decreases yield

M2 So equilibrium shifts to side with more moles/molecules or more moles/molecules on LHS

Allow M2 independent of M1

M3 So equilibrium shifts (to left side) to oppose decrease in pressure OR to increase pressure

Must refer to equilibrium shifting to gain maximum marks
(b) M 1 amount $\mathrm{SO}_{2}(=0.46-0.18)=0.28 \mathrm{~mol}$

M 2 amount $\mathrm{O}_{2}(=0.25-0.09)=0.16 \mathrm{~mol}$

M3 total amount $(=0.28+0.16+0.18)=\underline{0.62} \mathrm{~mol}$

M4 partial pressure of $\mathrm{SO}_{2}=\frac{0.28}{0.62} \times 215=97(.1)(\mathrm{kPa})$

$$
\mathrm{M} 4=\frac{M 1}{M 3} \times 215
$$

(c) $\mathrm{M} 1 K_{\mathrm{p}}=\frac{\left(\mathrm{pp} \mathrm{SO}_{3}\right)^{2}}{\left(\mathrm{pp} \mathrm{SO}_{2}\right)^{2} \times \mathrm{pp} \mathrm{O}_{2}}$

Penalise square brackets in M1
$\mathrm{M} 2=1.2(0) \times 10^{-2}$
$\mathrm{M} 3=\mathrm{kPa}^{-1}$
r
(d) Stays the same
2.
(a)

(b) M1 Equilibrium $\mathrm{n}\left(\mathrm{H}_{2}\right)=\underline{0.24}$

M2 Total number of moles $=\underline{0.47}$
1
M3 Mole fraction of $\mathrm{H}_{2}=0.51$ (1) or $\frac{0.24}{0.47}$
M3 Allow mole fraction of $\mathrm{H}_{2}=\frac{\mathrm{M} 1}{\mathrm{M} 2}$

M4 Partial pressure of hydrogen $=5310$ or $5.31 \times 10^{3} \mathrm{kPa}$
M4 Allow Partial pressure of hydrogen $=\mathbf{M 3} \mathbf{~} \mathbf{1 . 0 4 \times 1 0 ^ { 4 }}$
(c) M1 $K_{\mathrm{p}}=\frac{\mathrm{ppCH}_{3} \mathrm{OH}}{\mathrm{ppH}_{2}{ }^{2} \times \mathrm{ppCO}} \quad \mathrm{OR} \frac{\mathrm{pCH}_{3} \mathrm{OH}}{\mathrm{pH}_{2}{ }^{2} \times \mathrm{pCO}}$

Do not allow square brackets
Pa^{-2} or kPa^{-2}
Allow any pressure to power of ${ }^{-2}$
(d) M1 Increases

M2 No effect
(e) M1 No effect

M2 Increases rate of forward and backward reaction equally/by the same amount OR catalyst does not affect position of equilibrium

M2 Allow Catalyst does not appear in the K_{p} expression
M2 Allow Only temperature affects Kp
Ignore Catalysts increase the rate of reaction or rate at which equilibrium is reached 1
3. (a) Moles SO_{2} eqbm $(=6.08 / 64.1=0.0949)$ so moles O_{2} eqbm $=0.0474$

Mass of oxygen $(=0.0474 \times 32(.0))=1.52 \mathrm{~g}$
Allow 0.0475
Allow M1 $\times 32$
(b) M1: Mole fraction $\mathrm{SO}_{3}=0.15$

Mole fraction $\mathrm{SO}_{2}=0.57$
Mole fraction $\mathrm{O}_{2}=0.28$
Accept fractions for M1

M2 $K_{\mathrm{p}}=\frac{\left(\mathrm{pSO}_{2}\right)^{2} \times\left(\mathrm{pO}_{3}\right)}{\left(\mathrm{pSO}_{3}\right)^{2}} \quad\left(=\frac{\left.\left(\lambda \mathrm{SO}_{2}\right)^{2} \mathrm{P}^{2} \times\left(\lambda \mathrm{O}_{2}\right) \mathrm{P}\right)}{\left(\lambda \mathrm{SO}_{3}\right)^{2} \mathrm{P}^{2}}\right)$

M3 $\begin{aligned} \mathrm{P} & =\frac{\mathrm{K}_{\mathrm{Q}} \mathrm{x}\left(\lambda \mathrm{SO}_{3}\right)^{2}}{\left(\lambda \mathrm{SO}_{2}\right)^{2} \times\left(\lambda \mathrm{O}_{2}\right)}\end{aligned}$
or $\quad \frac{K_{\mathrm{g}} \times(0.15)^{2}}{\underline{2}}$
M3 is for rearrangement with or without numbers
If incorrect rearrangement allow correct M1 and M2 only

M4 P $=1.91 \times 10^{5}(\mathrm{~Pa})$ Allow range 1.88×10^{5} to 1.94×10^{5}
(c) M1 Kp is higher at higher temperature or converse

M2 At higher temperature more dissociation occurs / more products are formed / equilibrium shifts to the right/forward direction

M2: Allow converse arguments
M2 dependent on M1
(d) $\left(\sqrt{ } 3.94 \times 10^{4} \mathrm{~Pa}\right)=198.5$

$$
\mathrm{Pa}^{1 / 2} \text { or } \mathrm{Pa}^{0.5}
$$

Allow 198 - 198.5 (answer is 198.49)
If $\sqrt{ } 7.62 \times 10^{5}=873$ then lose M1 but allow M2

1
[10]
4. (a) pp nitrogen $=0.25 \times 30=\underline{7.5} \mathrm{kPa}$
pp hydrogen $=0.75 \times 30=\underline{22.5}$ or 23 kPa
pp of ammonia $=0.8 \times 150=\underline{120} \mathrm{kPa}$
1
(c) $\quad K_{p}=\frac{\left(1.10 \times 10^{3}\right)^{2}}{}$
$\left(1.50 \times 10^{2}\right)^{3} \times 1.20 \times 10^{2}$
No mark for this expression
$=0.0029$ to $0.003(0)$ or 2.9×10^{-3} to $3(.0) \times 10^{-3}$ kPa^{-2}

If expression inverted in 02.2 allow 1 mark for $\mathrm{kPa}{ }^{2}$
Allow 2.9 to $3(.0) \times 10^{-9} \mathrm{~Pa}^{-2}$
(d) decrease/smaller/lower

If increase or no change, 0 marks
If blank, mark on
(Reaction/equilibrium) shifts/moves/goes in the endothermic direction (which is to the left)
Allow reaction is exothermic so equilibrium moves to the left side
to reduce the temperature OR oppose the increase in temperature
5.
(a) Bonds broken $=2(\mathrm{C}=\mathrm{O})+3(\mathrm{H}-\mathrm{H})=2 \times 743+3 \times \mathrm{H}-\mathrm{H}$

Bonds formed $=3(\mathrm{C}-\mathrm{H})+(\mathrm{C}-\mathrm{O})+3(\mathrm{O}-\mathrm{H})=3 \times 412+360+3 \times 463$
Both required

$$
-49=[2 \times 743+3 \times(\mathrm{H}-\mathrm{H})]-[3 \times 412+360+3 \times 463]
$$

Both required

$$
3(\mathrm{H}-\mathrm{H})=-49-2 \times 743+[3 \times 412+360+3 \times 463]=1450
$$

(e) Impurities (or sulfur compounds) block the active sites

Allow catalyst poisoned
(f) Stage 1: moles of components in the equilibrium mixture Extended response question

$$
\mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Initial moles	1.0	3.0	0	0
Eqm	$(1-0.86)$ $=0.14$	$(3-3 \times 0.86)$ $=0.42$	0.86	0.86
moles				

Stage 2: Partial pressure calculations
Total moles of gas $=2.28$
Partial pressures $=$ mol fraction $\times \mathrm{p}_{\text {total }}$
$\mathrm{p}_{\mathrm{CO} 2}=\mathrm{mol}$ fraction $\times \mathrm{p}_{\text {total }}=0.14 \times 500 / 2.28=30.7 \mathrm{kPa}$
$\mathrm{p}_{\mathrm{H} 2}=\mathrm{mol}$ fraction $\times \mathrm{p}_{\text {total }}=0.42 \times 500 / 2.28=92.1 \mathrm{kPa}$
M3 is for partial pressures of both reactants
Alternative M3 =
$p p_{C O 2}=0.0614 \times 500$
$p p_{H 2}=0.1842 \times 500$
$\mathrm{p}_{\mathrm{CH} 3 \mathrm{OH}}=\mathrm{mol}$ fraction $\times \mathrm{p}_{\text {total }}=0.86 \times 500 / 2.28=188.6 \mathrm{kPa}$
$\mathrm{p}_{\mathrm{H} 2 \mathrm{O}}=$ mol fraction $\times \mathrm{p}_{\text {total }}=0.86 \times 500 / 2.28=188.6 \mathrm{kPa}$
M4 is for partial pressures of both products
Alternative M4 =
$p p_{\text {CH3OH }}=0.3772 \times 500$
$p p_{\text {Н2O }}=0.3772 \times 500$

Stage 3: Equilibrium constant calculation
$K_{\mathrm{p}}=\mathrm{p}_{\mathrm{CH} 3 \mathrm{OH}} \times \mathrm{p}_{\mathrm{H} 2 \mathrm{O}} / \mathrm{p}_{\mathrm{CO} 2} \times\left(\mathrm{p}_{\mathrm{H} 2}\right)^{3}$

Hence $K_{p}=188.6 \times 188.6 / 30.7 \times(92.1)^{3}=1.483 \times 10^{-3}=1.5 \times 10^{-3}$
Answer must be to 2 significant figures

Units $=\mathrm{kPa}^{-2}$
[16]

