

A-Level Chemistry

Kp Equilibrium Constant

Question Paper

Time available: 64 minutes Marks available: 57 marks

1. This question is about the equilibrium

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

(a) State and explain the effect, if any, of a decrease in overall pressure on the equilibrium yield of SO_{3}

Effect \qquad
Explanation \qquad
\qquad
\qquad
(b) A 0.460 mol sample of SO_{2} is mixed with a 0.250 mol sample of O_{2} in a sealed container at a constant temperature.
When equilibrium is reached at a pressure of 215 kPa , the mixture contains 0.180 mol of SO_{3}

Calculate the partial pressure, in kPa , of SO_{2} in this equilibrium mixture.

Partial pressure of $\mathrm{SO}_{2} \ldots \mathrm{kPa}$
(c) A different mixture of SO_{2} and O_{2} reaches equilibrium at a different temperature.

The table below shows the partial pressures of the gases at equilibrium.

Gas	Partial pressure $/ \mathbf{k P a}$
SO_{2}	1.67×10^{2}
O_{2}	1.02×10^{2}
SO_{3}	1.85×10^{2}

Give an expression for the equilibrium constant $(K p)$ for this reaction.
Calculate the value of the equilibrium constant for this reaction and give its units.

$$
K_{p}
$$

\qquad
Units \qquad
(d) What is the effect on the value of K_{p} if the pressure of this equilibrium mixture is increased at a constant temperature?

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Tick (\checkmark) one box.
The value of K_{p}
increases.

stays the same.

decreases.

2. Methanol can be manufactured in a reversible reaction as shown.
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \quad \Delta H^{\ominus}=-91 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The graph below shows how the partial pressures change with time at a constant temperature.

(a) Draw a cross (x) on the appropriate axis of the graph when the mixture reaches equilibrium.
(b) A 0.230 mol sample of carbon monoxide is mixed with hydrogen in a 1:2 mol ratio and allowed to reach equilibrium in a sealed flask at temperature T.
At equilibrium the mixture contains 0.120 mol of carbon monoxide.
The total pressure of this mixture is $1.04 \times 10^{4} \mathrm{kPa}$
Calculate the partial pressure, in kPa , of hydrogen in the equilibrium mixture.

Partial pressure of hydrogen ___ kPa
(c) Give an expression for the equilibrium constant $\left(K_{\mathrm{p}}\right)$ for this reaction.

State the units.
K_{p}

Units \qquad
(d) Some more carbon monoxide is added to the mixture in part (b). The new mixture is allowed to reach equilibrium at temperature T.

State the effect, if any, on the partial pressure of methanol and on the value of K_{p}
Effect on partial pressure of methanol \qquad
Effect on value of K_{p} \qquad
(e) State the effect, if any, of the addition of a catalyst on the value of K_{p} for this equilibrium. Explain your answer.

Effect on value of K_{p} \qquad
Explanation \qquad
\qquad
\qquad
(Total 11 marks)
3. Sulfur trioxide decomposes on heating to form an equilibrium mixture containing sulfur dioxide and oxygen.

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

(a) A sample of sulfur trioxide was heated and allowed to reach equilibrium at a given temperature.
The equilibrium mixture contained 6.08 g of sulfur dioxide.
Calculate the mass, in g , of oxygen gas in the equilibrium mixture.

Mass \qquad g
(b) A different mass of sulfur trioxide was heated and allowed to reach equilibrium at 1050 K

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

The amounts of each substance in the equilibrium mixture are shown in the table.

Substance	Amount at equilibrium / mol
sulfur trioxide	0.320
sulfur dioxide	1.20
oxygen	0.600

For this reaction at 1050 K the equilibrium constant, $K_{\mathrm{p}}=7.62 \times 10^{5} \mathrm{~Pa}$
Calculate the mole fraction of each substance at equilibrium.
Give the expression for the equilibrium constant, K_{p}
Calculate the total pressure, in Pa , of this equilibrium mixture.

Mole fraction SO_{3} \qquad
Mole fraction SO_{2} \qquad
Mole fraction O_{2} \qquad
$K_{\text {p }}$

Total pressure \qquad Pa
(c) For this reaction at 1050 K the equilibrium constant, $K_{\mathrm{p}}=7.62 \times 10^{5} \mathrm{~Pa}$

For this reaction at 500 K the equilibrium constant, $K_{\mathrm{p}}=3.94 \times 10^{4} \mathrm{~Pa}$
Explain how this information can be used to deduce that the forward reaction is endothermic.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Use data from part (c) to calculate the value of K_{p}, at 500 K , for the equilibrium represented by this equation.
Deduce the units of K_{p}

$$
\mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})
$$

$$
K_{\mathrm{p}}
$$

\qquad
Units \qquad
4. Nitrogen and hydrogen were mixed in a 1:3 mole ratio and left to reach equilibrium in a flask at a temperature of 550 K . The equation for the reaction between nitrogen and hydrogen is shown.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

(a) When equilibrium was reached, the total pressure in the flask was 150 kPa and the mole fraction of $\mathrm{NH}_{3}(\mathrm{~g})$ in the mixture was 0.80

Calculate the partial pressure of each gas in this equilibrium mixture.
$\begin{array}{cc}\text { Partial pressure of nitrogen } & \mathrm{kPa} \\ \text { Partial pressure of hydrogen } & \mathrm{kPa} \\ \text { Partial pressure of ammonia } & \mathrm{kPa}\end{array}$
(b) Give an expression for the equilibrium constant $\left(K_{\mathrm{p}}\right)$ for this reaction.
K_{p}
(c) In a different equilibrium mixture, under different conditions, the partial pressures of the gases are shown in the table.

Gas	Partial pressure $/ \mathbf{k P a}$
N_{2}	1.20×10^{2}
H_{2}	1.50×10^{2}
NH_{3}	1.10×10^{3}

Calculate the value of the equilibrium constant $\left(K_{p}\right)$ for this reaction and give its units.
K_{p} \qquad Units \qquad
(d) The enthalpy change for the reaction is $-92 \mathrm{~kJ} \mathrm{~mol}^{-1}$

State the effect, if any, of an increase in temperature on the value of K_{p} for this reaction. Justify your answer.

Effect on K_{p} \qquad
Justification \qquad
\qquad
\qquad
\qquad
\qquad
5. Many chemical processes release waste products into the atmosphere. Scientists are developing new solid catalysts to convert more efficiently these emissions into useful products, such as fuels. One example is a catalyst to convert these emissions into methanol. The catalyst is thought to work by breaking a $\mathrm{H}-\mathrm{H}$ bond.

An equation for this formation of methanol is given below.

$$
\mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta H=-49 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Some mean bond enthalpies are shown in the following table.

Bond	$\mathrm{C}=\mathrm{O}$	$\mathrm{C}-\mathrm{H}$	$\mathrm{C}-\mathrm{O}$	$\mathrm{O}-\mathrm{H}$
Mean bond enthalpy/ $\mathbf{k J ~ m o l}^{\mathbf{- 1}}$	743	412	360	463

(a) Use the enthalpy change for the reaction and data from the table to calculate a value for the $\mathrm{H}-\mathrm{H}$ bond enthalpy.

$$
\mathrm{H}-\mathrm{H} \text { bond enthalpy }=\ldots \mathrm{kJ} \mathrm{~mol}^{-1}
$$

(b) A data book value for the $\mathrm{H}-\mathrm{H}$ bond enthalpy is $436 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Suggest one reason why this value is different from your answer to part (a).
\qquad
\qquad
\qquad
(c) Suggest one environmental advantage of manufacturing methanol fuel by this reaction.
\qquad
\qquad
\qquad
(d) Use Le Chatelier's principle to justify why the reaction is carried out at a high pressure rather than at atmospheric pressure.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(e) Suggest why the catalyst used in this process may become less efficient if the carbon dioxide and hydrogen contain impurities.
\qquad
\qquad
\qquad
(f) In a laboratory experiment to investigate the reaction shown in the equation below, 1.0 mol of carbon dioxide and 3.0 mol of hydrogen were sealed into a container. After the mixture had reached equilibrium, at a pressure of 500 kPa , the yield of methanol was 0.86 mol .

$$
\mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Calculate a value for K_{p}
Give your answer to the appropriate number of significant figures.
Give units with your answer.

$$
K_{\mathrm{p}}=
$$

\qquad Units = \qquad

