

A-Level Chemistry

Kp (Multiple Choice)

Question Paper

Time available: 16 minutes Marks available: 15 marks

1. The equation for the reaction between sulfur dioxide and oxygen is shown.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

In an experiment, 2.00 mol of sulfur dioxide are mixed with 2.00 mol of oxygen.
The total amount of the three gases at equilibrium is 3.40 mol
What is the mole fraction of sulfur trioxide in the equilibrium mixture?

A 0.176

B 0.353

C 0.600

D 1.200

(Total 1 mark)
2. Nitrogen reacts with hydrogen in this exothermic reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Which change increases the equilibrium yield of ammonia but has no effect on the value of the equilibrium constant K_{p} ?

A Add a catalyst

B Increase the partial pressure of nitrogen \square
C Decrease the temperature

D Decrease the total pressure

(Total 1 mark)
3. An equilibrium mixture is prepared in a container of fixed volume.

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCl}_{2}(\mathrm{~g}) \quad \Delta H=-108 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

The temperature of this mixture is decreased and the mixture is allowed to reach a new equilibrium.

Which is greater for the new equilibrium than for the original equilibrium?

A The mole fraction of carbon monoxide

B The partial pressure of chlorine

C The total pressure of the mixture

D \quad The value of the equilibrium constant, K_{p}

(Total 1 mark)
4. Which statement about K_{p} is correct for this reaction in the gas phase?

$$
\mathrm{W}+\mathrm{X}+\mathrm{Y}_{2} \rightleftharpoons \mathrm{WXY}+\mathrm{Y} \quad \Delta H=-46 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

A The value of K_{p} is independent of pressure. \square

B \quad The value of K_{p} increases as pressure increases.

C The value of K_{p} increases as temperature increases. \square

D \quad The value of K_{p} is independent of temperature.
(Total 1 mark)
5. Which change would alter the value of the equilibrium constant $\left(\mathrm{K}_{\mathrm{p}}\right)$ for this reaction?

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

A Increasing the total pressure of the system. $\quad \circ$
B Increasing the concentration of sulfur trioxide. 0
C Increasing the concentration of sulfur dioxide. \bigcirc

D Increasing the temperature.

6. This question is about the reaction given below.

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

Enthalpy data for the reacting species are given in the table below.

Substance	$\mathrm{CO}(\mathrm{g})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$\mathrm{CO}_{2}(\mathrm{~g})$	$\mathrm{H}_{2}(\mathrm{~g})$
$\Delta H_{\mathrm{r}}{ }^{\ominus} / \mathrm{kJ} \mathrm{mol}^{-1}$	-110	-242	-394	0

Which one of the following statements is not correct?
A The value of K_{p} changes when the temperature changes.
B The activation energy decreases when the temperature is increased.
C The entropy change is more positive when the water is liquid rather than gaseous.
D The enthalpy change is more positive when the water is liquid rather than gaseous.
(Total 1 mark)
7. The equation for the combustion of butane in oxygen is

$$
\mathrm{C}_{4} \mathrm{H}_{10}+6 \frac{1}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}
$$

The mole fraction of butane in a mixture of butane and oxygen with the minimum amount of oxygen required for complete combustion is

A 0.133
B 0.153
C 0.167
C 0.200
(Total 1 mark)
8. This question relates to the equilibrium gas-phase synthesis of sulphur trioxide:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Thermodynamic data for the components of this equilibrium are:

Substance	$\Delta H_{\mathrm{r}}^{\boldsymbol{\Theta}} / \mathbf{k J ~ m o l}^{\mathbf{- 1}}$	$\boldsymbol{S}^{\boldsymbol{\ominus}} / \mathbf{~ J ~ K}^{\mathbf{1}} \mathbf{~ m o l}^{\mathbf{- 1}}$
$\mathrm{SO}_{3}(\mathrm{~g})$	-396	+257
$\mathrm{SO}_{2}(\mathrm{~g})$	-297	+248
$\mathrm{O}_{2}(\mathrm{~g})$	0	+204

This equilibrium, at a temperature of 585 K and a total pressure of 540 kPa , occurs in a vessel of volume $1.80 \mathrm{dm}^{3}$. At equilibrium, the vessel contains 0.0500 mol of $\mathrm{SO}_{2}(\mathrm{~g}), 0.0800 \mathrm{~mol}$ of $\mathrm{O}_{2}(\mathrm{~g})$ and 0.0700 mol of $\mathrm{SO}_{3}(\mathrm{~g})$.

The mole fraction of SO_{3} in the equilibrium mixture is
A 0.250
B 0.350
C $\quad 0.440$
D $\quad 0.700$
9. This question relates to the equilibrium gas-phase synthesis of sulphur trioxide:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Thermodynamic data for the components of this equilibrium are:

Substance	$\Delta H_{r}^{\ominus} / \mathbf{k J ~ m o l}^{\mathbf{- 1}}$	$\boldsymbol{S}^{\boldsymbol{\ominus}} / \mathbf{~ J ~ K}^{\mathbf{1}} \mathbf{~ m o l}^{\mathbf{- 1}}$
$\mathrm{SO}_{3}(\mathrm{~g})$	-396	+257
$\mathrm{SO}_{2}(\mathrm{~g})$	-297	+248
$\mathrm{O}_{2}(\mathrm{~g})$	0	+204

This equilibrium, at a temperature of 585 K and a total pressure of 540 kPa , occurs in a vessel of volume $1.80 \mathrm{dm}^{3}$. At equilibrium, the vessel contains 0.0500 mol of $\mathrm{SO}_{2}(\mathrm{~g}), 0.0800 \mathrm{~mol}$ of $\mathrm{O}_{2}(\mathrm{~g})$ and 0.0700 mol of $\mathrm{SO}_{3}(\mathrm{~g})$.

With pressures expressed in MPa units, the value of the equilibrium constant, K_{p}, is
A 4.90
B 6.48
C $\quad 9.07$
D $\quad 16.8$
10. This question relates to the equilibrium gas-phase synthesis of sulphur trioxide:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Thermodynamic data for the components of this equilibrium are:

Substance	$\boldsymbol{\Delta} \boldsymbol{H}_{\mathrm{r}}^{\boldsymbol{\ominus}} / \mathbf{\mathbf { k J ~ m o l } ^ { \mathbf { 1 } }}$	$\boldsymbol{S}^{\boldsymbol{\ominus}} / \mathbf{~ J ~ K}^{\mathbf{- 1}} \mathbf{~ m o l}^{\mathbf{- 1}}$
$\mathrm{SO}_{3}(\mathrm{~g})$	-396	+257
$\mathrm{SO}_{2}(\mathrm{~g})$	-297	+248
$\mathrm{O}_{2}(\mathrm{~g})$	0	+204

This equilibrium, at a temperature of 585 K and a total pressure of 540 kPa , occurs in a vessel of volume $1.80 \mathrm{dm}^{3}$. At equilibrium, the vessel contains 0.0500 mol of $\mathrm{SO}_{2}(\mathrm{~g}), 0.0800 \mathrm{~mol}$ of $\mathrm{O}_{2}(\mathrm{~g})$ and 0.0700 mol of $\mathrm{SO}_{3}(\mathrm{~g})$.

Possible units for the equilibrium constant K_{p} include
A no units
B kPa
C Mpa^{-1}
D kPa^{-2}

This question relates to the equilibrium gas-phase synthesis of sulphur trioxide:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Thermodynamic data for the components of this equilibrium are:

Substance	$\Delta H_{r}^{\boldsymbol{\ominus}} / \mathbf{k J ~ m o l}^{\mathbf{- 1}}$	$\boldsymbol{S}^{\boldsymbol{\ominus}} / \mathbf{~ J ~ K}^{\mathbf{- 1}} \mathbf{~ m o l}^{\mathbf{- 1}}$
$\mathrm{SO}_{3}(\mathrm{~g})$	-396	+257
$\mathrm{SO}_{2}(\mathrm{~g})$	-297	+248
$\mathrm{O}_{2}(\mathrm{~g})$	0	+204

This equilibrium, at a temperature of 585 K and a total pressure of 540 kPa , occurs in a vessel of volume $1.80 \mathrm{dm}^{3}$. At equilibrium, the vessel contains 0.0500 mol of $\mathrm{SO}_{2}(\mathrm{~g}), 0.0800 \mathrm{~mol}$ of $\mathrm{O}_{2}(\mathrm{~g})$ and 0.0700 mol of $\mathrm{SO}_{3}(\mathrm{~g})$.

At equilibrium in the same vessel of volume $1.80 \mathrm{dm}^{3}$ under altered conditions, the reaction mixture contains 0.0700 mol of $\mathrm{SO}_{3}(\mathrm{~g}), 0.0500 \mathrm{~mol}$ of $\mathrm{SO}_{2}(\mathrm{~g})$ and 0.0900 mol of $\mathrm{O}_{2}(\mathrm{~g})$ at a total pressure of 623 kPa . The temperature in the equilibrium vessel is

A $\quad 307^{\circ} \mathrm{C}$
B $\quad 596 \mathrm{~K}$
C $\quad 337^{\circ} \mathrm{C}$
D $\quad 642 \mathrm{~K}$
12. The following information concerns the equilibrium gas-phase synthesis of methanol.

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

At equilibrium, when the temperature is $68^{\circ} \mathrm{C}$, the total pressure is 1.70 MPa .
The number of moles of $\mathrm{CO}, \mathrm{H}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$ present are $0.160,0.320$ and 0.180 , respectively.
Thermodynamic data are given below.

Substance	$\Delta H_{\mathbf{f}}^{\boldsymbol{\Theta}} / \mathbf{k J} \mathbf{~ m o l}^{\mathbf{- 1}}$	$\boldsymbol{S}^{\boldsymbol{\Theta}} / \mathbf{~ J ~ K}^{\mathbf{- 1}} \mathbf{~ m o l}^{\mathbf{- 1}}$
$\mathrm{CO}(\mathrm{g})$	-110	198
$\mathrm{H}_{2}(\mathrm{~g})$	0	131
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$	-201	240

Possible units for the equilibrium constant, K_{p}, for this reaction are
A no units
B kPa
C MPa^{-1}
D kPa^{-2}
13. The following information concerns the equilibrium gas-phase synthesis of methanol.

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

At equilibrium, when the temperature is $68^{\circ} \mathrm{C}$, the total pressure is 1.70 MPa .
The number of moles of $\mathrm{CO}, \mathrm{H}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$ present are $0.160,0.320$ and 0.180 , respectively.
Thermodynamic data are given below.

Substance	$\boldsymbol{\Delta} \boldsymbol{H}_{\mathbf{f}}^{\boldsymbol{\Theta}} / \mathbf{k J} \mathbf{~ m o l}^{\mathbf{- 1}}$	$\boldsymbol{S}^{\boldsymbol{\Theta}} / \mathbf{~ J ~ K}^{\mathbf{- 1}} \mathbf{~ m o l}^{\mathbf{- 1}}$
$\mathrm{CO}(\mathrm{g})$	-110	198
$\mathrm{H}_{2}(\mathrm{~g})$	0	131
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$	-201	240

With pressures expressed in MPa units, the value of the equilibrium constant, K_{p}, under these conditions is

A 1.37
B 1.66
C 2.82
D $\quad 4.80$
14. The following information concerns the equilibrium gas-phase synthesis of methanol.

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

At equilibrium, when the temperature is $68^{\circ} \mathrm{C}$, the total pressure is 1.70 MPa .
The number of moles of $\mathrm{CO}, \mathrm{H}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$ present are $0.160,0.320$ and 0.180 , respectively.
Thermodynamic data are given below.

Substance	$\boldsymbol{\Delta} \boldsymbol{H}_{\mathbf{f}}^{\boldsymbol{\Theta}} / \mathbf{k J} \mathbf{~ m o l}^{\mathbf{- 1}}$	$\boldsymbol{S}^{\boldsymbol{\Theta}} / \mathbf{~ J ~ K}^{\mathbf{- 1}} \mathbf{~ m o l}^{\mathbf{- 1}}$
$\mathrm{CO}(\mathrm{g})$	-110	198
$\mathrm{H}_{2}(\mathrm{~g})$	0	131
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$	-201	240

The mole fraction of hydrogen in the equilibrium mixture is
A 0.242
B 0.485
C 0.653
D 0.970
15. The following information concerns the equilibrium gas-phase synthesis of methanol.

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH} 3 \mathrm{OH}(\mathrm{~g})
$$

At equilibrium, when the temperature is $68^{\circ} \mathrm{C}$, the total pressure is 1.70 MPa .
The number of moles of $\mathrm{CO}, \mathrm{H}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$ present are $0.160,0.320$ and 0.180 , respectively.
Thermodynamic data are given below.

Substance	$\boldsymbol{\Delta} \boldsymbol{H}_{\mathbf{f}}^{\boldsymbol{\Theta}} / \mathbf{k J} \mathbf{~ m o l}^{\mathbf{- 1}}$	$\boldsymbol{S}^{\boldsymbol{\Theta}} / \mathbf{~ J ~ K}^{\mathbf{- 1}} \mathbf{~ m o l}^{\mathbf{- 1}}$
$\mathrm{CO}(\mathrm{g})$	-110	198
$\mathrm{H}_{2}(\mathrm{~g})$	0	131
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$	-201	240

Which one of the following statements applies to this equilibrium?

A The value of K_{p} increases if the temperature is raised.
B The value of K_{p} increases if the pressure is raised.
C The yield of methanol decreases if the temperature is lowered.
D The yield of methanol decreases if the pressure is lowered.
(Total 1 mark)

