

A-Level Chemistry

Ligand Substitution

Mark Scheme

Time available: 69 minutes Marks available: 63 marks

www.accesstuition.com

Mark schemes

- 1.
- (a) Covalent

Do not allow dative covalent or coordinate (covalent)

(b) Cl⁽⁻⁾ not donating lone pair (to Cu⁽²⁺⁾)

Cl⁽⁻⁾ does not form a coordinate/dative bond (to Cu⁽²⁺⁾)

Allow without charges but penalise incorrect charges

Cl⁻/it is bonded ionically (to Cu²⁺)

(c) $[Cu(H_2O)_6]^{2+} + 4NH_3 \rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 4H_2O$

Deep blue / Royal blue / Dark blue (solution)

Allow combination of:

$$[Cu(H_2O)_6]^{2+} + 2NH_3 \rightarrow [Cu(H_2O)_4(OH)_2] + 2NH_4^+$$

 $[Cu(H_2O)_4(OH)_2] + 4NH_3 \rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 2H_2O + 2OH^{-}$

Do not penalise missing square brackets

Ignore initial colour of Cu2+ (aq)

(d) CuCO₃ or copper carbonate

Penalise incorrect oxidation state

Allow correct formula for basic copper carbonate

(e) HCI/ hydrochloric acid

Ignore concentration

Allow soluble chloride salt

Also allow any reagent which leads to a change in colour of solution due to a change in ligands (e.g. $NH_2CH_2CH_2NH_2$) or change in oxidation state (e.g. SO_2) and associated correct equations.

$$\begin{split} & [\text{Cu}(\text{H}_2\text{O})_6\]^{2+} + 4\text{Cl}^- \longrightarrow [\text{Cu}\text{Cl}_4]^{2-} + 6\text{H}_2\text{O} \\ & [\text{Cu}(\text{H}_2\text{O})_6\]^{2+} + 4\text{HCl} \longrightarrow [\text{Cu}\text{Cl}_4]^{2-} + 6\text{H}_2\text{O} + 4\text{H}^+ \end{split}$$

Mark independently

(f) (3)d¹⁰ or has full (3)d (sub) shell/orbital

Penalise incorrect principal quantum number

It is colourless/cannot absorb (frequencies of) visible light Ignore clear

[9]

1

1

1

1

1

1

1

1

1

1

(b) Cl⁻ is a bigger ligand

1

So only $4\mbox{Cl}^-$ can fit around the metal

Allow fewer CΓ can fit around the metal

1

(c)

M1 for structure of complexM2 for correct charge

1 1

(d) Change in entropy is positive

1

(e)
$$5\text{Fe}^{2+} + \text{MnO}_4^- + 8\text{H}^+ \longrightarrow \text{Mn}^{2+} + 5\text{Fe}^{3+} + 4\text{H}_2\text{O}$$

1

(f) Amount of manganate (VII) = 6.50×10^{-4} mol

1

Amount of iron(II) = 3.25×10^{-3} mol ie $M1 \times 5$

1

Mass of iron = 0.181 g = 181 mg $Allow M2 \times 55.8$

1

Percentage Fe = $181/1980 \times 100 = 9.14(\%)$ 3 sf

1

1

(g) Colourless to pale pink

[12]

3.

(a) Multidentate – EDTA can form many / six dative bonds with central cation.

1

Ligand – lone pair (on N or O of EDTA) can form dative bond with copper(II) ions.

1

6 circles drawn on EDTA⁴⁻ structure – 2 × N and 4 × –O

1

(b) Calibrate a colorimeter / produce a calibration curve.

1

By testing the colorimeter with solutions of copper-EDTA complex of known concentration.

1

Add excess EDTA salt to the sample.

1

(c) $[Cu(H_2O)_6]^{2+} + EDTA^{4-} \longrightarrow [Cu(EDTA)]^{2-} + 6H_2O$

1

Amount of copper(II) = $(25.0 \times 7.56 \times 10^{-5})/1000 = 1.89 \times 10^{-6}$ mol

1

Volume of EDTA⁴⁻ = $(1.89 \times 10^{-6} / 0.001) \times 1000 = 1.89 \text{ cm}^3$

1

This is too small to be accurate.

1

1

Dilute the EDTA⁴⁻ solution / use larger volume of river water.

[11]

4.

(a) (i) EDTA⁴⁻ + [Cu(H₂O)₆]²⁺ \rightarrow [Cu(EDTA)]²⁻ + 6H₂O

(ii) (Mol EDTA = $(6.45/1000) \times 0.015 =)9.68 \times 10^{-5} \text{ mol Cu(II)}$

1

1

Conc. Cu(II) = $((9.68 \times 10^{-5}) / 0.025 =) 0.00387 \text{ mol dm}^{-3}$ Correct answer without working gains M2 only.

1

(b) Samples may not be consistent throughout the river OR

Concentration may vary over time

Ignore comments on technique.

1

(c) $[Ag(NH_3)_2]^+$

Accept name eg diamminesilver(I) ion.

1

1

1

1

1

2

1

1

1

1

5.

(a)	Ligand: -
	atom, ion or molecules which can donate a pa

atom, ion or molecules which can donate a pair of electrons to a metal ion.

1
co-ordinate bond:- a covalent bond

1

in which both electrons are donate by one atom

(b) (i) Two correct complex ions

Balanced equation

Two correct colours

(ii) Complex with a bidentate ligand

Balanced equation

NB en not allowed as a ligand unless structure also given

More molecules/ions formed

Increase in entropy

more stable complex formed

1 Max 2

	(c)	ΔE ; energy absorbed by electron, ground to excited state (QoL)	1	
		h; Planck's constant or a constant	1	
		Change in	1	
		Oxidation state	1	
		Ligand		
		Co-ordination number	1	
		Apply list principle to incorrect additional answers	1	F4.03
6.	(a)	$C_2O_4^{2-}$ or $H_2NCH_2CH_2NH_2$ (1)		[16]
0.	(b)	$[AgCl_2]^-$ or $[Ag(CN)_2]^-$ or $[Ag(NH_3)_2]^+$ (1)	1	
	, ,		1	
	(c)	e.g. $[Co(H_2O)_6]^{2+} + 4Cl^- \rightarrow [CoCl_4]^{2-} + 6H_2O$ Correct complex species (1) , Balanced (1) , Only allow if species correct	2	
	(d)	e.g. $[Co(H_2O)_6]^{2+} + 6NH_3 \rightarrow [Co(NH_3)_6]^{2+} + 6H_2O$ Correct complex species (1), Balanced (1), Only allow if species correct		
			2	
	(e)	Equation: $[Co(H_2O)_6]^{2+} + EDTA^{4-} \rightarrow [Co(EDTA)]^{2-} + 6H_2O$ (1) Explanation: More molecules on right hand side (1) Entropy increases (1)		
			3	[9]