

A-Level Chemistry

Mass Number and Isotopes

Mark Scheme

Time available: 63 minutes Marks available: 57 marks

1. (a) Number of protons + neutrons (in the nucleus of the atom)

Do not allow reference to mass or average
Ignore references to C-12 being 12
(b)

	Number of protons	Number of neutrons	Number of electrons
${ }^{46} \mathrm{Ti}$	22	24	22
${ }^{49} \mathrm{Ti}^{2+}$	22	27	20

Mark as rows
(c) Let ${ }^{49} \mathrm{Ti}$ be y

M1 $47.8=\frac{(46 \times 2 y)+(47 \times 2 y)+(48 \times(100-5 y))+(49 \times y)}{100}$
$47.8=\frac{235 y+4800-240 y}{100}$
Allow
M1 $47.8=\frac{(46 \times 2)+(47 \times 2)+(48 \times n)+49}{(5+n)}$
$\mathrm{M} 25 \mathrm{y}=20 \mathrm{OR} \mathrm{y}=4$
M2 $0.2 n=4$ or $n=20$

M3 abundance of ${ }^{46} \mathrm{Ti}=8 \%$

$$
\text { M3 } \%^{46} T i=\frac{2}{25} \times 100=8 \%
$$

2. (a) The average mass of an atom of an element
(Weighted) average mass of all isotopes of an element

Compared to $1 / 12^{\text {th }}$ the mass of an atom of carbon-12
(b) R.A.M. $=\frac{(82 \times 6)+(83 \times 1)+(84 \times 28)+(86 \times 8)}{43}$

M1 for working
= 3615 / 43
$=84.1$
M2 for answer to 1 decimal place 36.2 scores 1/2
(c) M1 $\mathrm{m}=(84 / 1000) / 6.02 \times 10^{23}\left(=1.395 \times 10^{-25} \mathrm{~kg}\right)$

Alternative method
$M 1: m=(84 / 1000) / 6.02 \times 10^{23}\left(=1.395 \times 10^{-25} \mathrm{~kg}\right)$
M2 $\quad \mathrm{v}^{2}=2 \mathrm{ke} / \mathrm{m}=2 \times\left(4.83 \times 10^{-16}\right) /\left(1.395 \times 10^{-25}\right)$
M2: $d^{2}=2$ ke t^{2} / m
M3 $\quad \mathrm{V} \quad=\sqrt{ }(6924731183)=83214.97$
M3: $d^{2}=2 \times\left(4.83 \times 10^{-16}\right) \times\left(1.73 \times 10^{-5}\right)^{2} / 1.395 \times 10^{-25} d^{2}=2.07$
M4 $\quad \mathrm{d} \quad=\mathrm{vxt}=83214.97 \times 1.72 \times 10^{-5}=1.43(\mathrm{~m})$
M4 = 1.44 (m)
Allow answers in range 1.43-1.44m
If m not converted to kg , then $\mathrm{d}=0.045 \mathrm{~m}$ for $\max 3$
3. (a) Average / mean mass of 1 atom (of an element)
$1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$
If moles and atoms mixed, max $=1$
Mark top and bottom line independently. All key terms must be present for each mark.

OR
Average / mean mass of atoms of an element
$1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$
OR
Average / mean mass of atoms of an element $\times 12$
mass of one atom of ${ }^{12} \mathrm{C}$

OR

(Average) mass of one mole of atoms
$1 / 12$ mass of one mole of ${ }^{12} \mathrm{C}$

OR

(Weighted) average mass of all the isotopes
$1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$

OR

Average mass of an atom/isotope compared to/relative to $\mathrm{C}-12$ on a scale in which an atom of $\mathrm{C}-12$ has a mass of 12

This expression $=2$ marks
(b) M1 \% of ${ }^{50} \mathrm{Cr}$ and ${ }^{53} \mathrm{Cr}=13.9 \%$

Let $\%$ of ${ }^{53} \mathrm{Cr}=\mathrm{x} \%$ and Let $\%$ of ${ }^{50} \mathrm{Cr}=(13.9-\mathrm{x}) \%$
If x used for ${ }^{50} \mathrm{Cr}$ and ${ }^{53} \mathrm{Cr}$ or x and y , max 2 marks $=\mathbf{M} 1$ and $\mathbf{M 4}$
Alternative M2
Let \% of ${ }^{53} \mathrm{Cr}=(13.9 \%-x) \%$ and $\%$ of ${ }^{50} \mathrm{Cr}=x \%$

M2 $\quad 52.1=\frac{50(13.9-x)+(52 \times 86.1)+53(x)}{100}$
OR
$3 x=37.8$
M2 $52.1=\frac{53(13.9-\mathrm{x})+(52 \times 86.1)+50 \mathrm{x}}{100}$
OR
$3 x=3.9$

M3 $\quad \mathrm{x}=\%$ of ${ }^{53} \mathrm{Cr}=12.6 \%$

M4 \% of ${ }^{50} \mathrm{Cr}=1.3 \%$
M4 = M1- M3
(c) M1 (Same) number of protons OR electrons Do not allow same electronic configuration for M1

M2 (Different) number of neutrons
(d) M1 (lons will interact with and) be accelerated (by an electric field)

Allow (ions) accelerated to a negative plate
Do not allow magnetic field

M2 lons create a current when hitting the detector OR ions create a current in the detector/electron multiplier.

Allow (ions) can be detected
(e) M1 Mass of ion $=\underline{8.8 . \times 10^{-26}} \mathrm{~kg}$

M1 Mass of ion in kg

M2

$$
\begin{aligned}
v^{2}= & \frac{2 K E}{m}=v^{2}=\frac{2 \times 1.102 \times 10^{-13}}{8.8 . \times 10^{-26}} \quad\left(=2.504 \times 10^{12}\right) \\
& \text { M2 Rearrangement } \\
& \text { Alternative M2 } v=\sqrt{\frac{2 K E}{m}}
\end{aligned}
$$

M3

$$
v=\sqrt{ }\left(\frac{2 \times 1.102 \times 10^{-13}}{8.8 . \times 10^{-26}}\right)=1.58 \times 10^{6}\left(\mathrm{~ms}^{-1}\right)
$$

M3: Calculating v by taking \sqrt{v}

M4 $\quad v=\frac{d}{t}$
M4: Recall of $v=d / t$

M5 $t=7.9(0) \times 10^{-7}$ (s) (2sf or more)
M5: Calculating t

Alternative
M1 Mass of ion $=\underline{8.8 .} \times 10^{-26} \mathrm{~kg}$
Alternative
M1 Mass of ion in kg

M2

$$
\begin{aligned}
K E= & \frac{m d^{2}}{2 t^{2}} \text { or } v=\frac{d}{t} \\
& \text { M2 Recall of } v=d / t
\end{aligned}
$$

M3 $\quad \mathrm{t}^{2}=\frac{m d^{2}}{2 K E}$ OR $\frac{8.8 \times 10^{-28} \times 1.25^{2}}{2 \times 1.102 \times 10^{-13}}$
M3 Rearrangement

M5 $\quad t=7.9(0) \times 10^{-7}$ (s) (2sf or more)
M5: Calculating t by taking square root of M4
Allow answers consequential on incorrect M1 If mass in g calculated $=8.8 . \times 10^{-23}$, then $t=2.5 \times 10^{-5} \mathrm{~s}(4$ marks $)$
4. (a) $=79 /\left(1000 \times 6.022 \times 10^{23}\right)=1.31 \times 10^{-25} \mathrm{~kg}$

Then either follow method 1 (or method 2 below)
Do not mix and match methods

Method 1

$\mathrm{V}_{79}=\frac{d}{t}=0.950 / 6.69 \times 10^{-4}$
$=1420 \mathrm{~ms}^{-1}$
In method 1, M2 can be awarded in M3
$K E=1 / 2 m v^{2}$
$=1 / 2 \times 1.312 \times 10^{-25} \times(1420)^{2}$
$=1.32 \times 10^{-19} \mathrm{~J}$
Mark consequential to their velocity and mass. Allow mass of 79 etc.

$$
\begin{aligned}
& \mathrm{V}_{81}=\sqrt{ }\left(\frac{2 \mathrm{KE}}{m}\right) \\
& =\sqrt{ } 1.963 \times 10^{6} \\
& =1.40 \times 10^{3} \mathrm{~ms}^{-1}
\end{aligned}
$$

(allow $1.398 \times 10^{3}-1.402 \times 10^{3}$)
Mark consequential to their velocity and mass. Allow mass of 81 etc.

$$
\begin{aligned}
& \mathrm{t}=\frac{d}{v}=\frac{0.950}{v_{81}} \\
& =6.80 \times 10^{-4} \mathrm{~s} \\
& \quad \text { Mark consequential to their M4 } \\
& \quad \text { Accept } 6.77-6.80 \times 10^{-4} \mathrm{~s}
\end{aligned}
$$

Method 2

$$
\begin{aligned}
& m_{1}\left(d / t_{1}\right)^{2}=m_{2}\left(d / t_{1}\right)^{2} \\
& \text { or } \\
& m_{1} / t_{1}{ }^{2}=m_{2} / t_{2}{ }^{2} \\
& t_{2}{ }^{2}=t_{1}^{2}\left(m_{2} / m_{1}\right) \\
& \text { Or } \\
& t_{2}{ }^{2}=\left(6.69 \times 10^{-4}\right) 2 \times(81 / 79) \\
& t_{2}{ }^{2}=4.59 \times 10^{-7} \\
& \text { Mark consequential to their } M 3
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{t}=6.77 \times 10^{-4} \mathrm{~s} \\
& \text { Mark consequential to their M4 } \\
& \text { Accept } 6.77-6.80 \times 10^{-4} \mathrm{~s}
\end{aligned}
$$

(b) ion hits the detector / negative plate and gains an electron

Not positive plate
(relative) abundance is proportional to (the size of) the current
5. (a) (Sample is) dissolved (in a volatile solvent)

Allow named solvent (eg water/methanol)
(Injected through) needle/nozzle/capillary at high voltage/positively charged Ignore pressure
(b) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{~N}^{+} / \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{NH}^{+}$

Must be charged
(c) $\mathrm{Ge}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Ge}+(\mathrm{g})+2 \mathrm{e}^{-}$

OR

$$
\begin{aligned}
& \mathrm{Ge}(\mathrm{~g}) \rightarrow \mathrm{Ge}+(\mathrm{g})+\mathrm{e}^{-} \\
& \text {State symbols essential }
\end{aligned}
$$

(d) $\mathbf{M} 1 \mathbf{v}=$ length $/ \mathrm{t}=0.96 / 4.654 \times 10^{-6}$

$$
\begin{aligned}
& \mathrm{v}=206274 \mathrm{~m} \mathrm{~s}^{-1} \\
& \mathrm{~m}=2 \mathrm{KE} / \mathrm{v}^{2} \\
& \quad \text { M1 = working (or answer) }
\end{aligned}
$$

M2 mass of one ion $=1.146 \times 10^{-25} \mathrm{~kg}$
M2 = answer conseq on M1
1
M3 mass of 1 mole ions $=1.146 \times 10^{-25} \times 6.022 \times 10^{23}=(0.06901 \mathrm{~kg})$ $\mathbf{M 3}=\boldsymbol{M} \mathbf{2} \times 6.022 \times 10^{23}$

M4 $=69(.01) \mathrm{g}$
$\boldsymbol{M 4}=\mathbf{M} \times 1000$
M3/M4 could be in either order

M5 mass number $=69$
M5 must have whole number for mass no
6. (a) ${ }^{24} \mathrm{Mg}$ has $12 \mathrm{n} ;{ }^{25} \mathrm{Mg}$ has $13 \mathrm{n} ;{ }^{26} \mathrm{Mg}$ has 14 n

OR They have different numbers of neutrons

Because all have the same electronic structure (configuration)
OR they have the same number of outer electrons
(c) If fraction with mass $24=x$

Fraction with mass $26=0.900-x$
Fraction with mass $25=0.100$
$A_{\mathrm{r}}=24 \mathrm{x}+(25 \times 0.100)+26(0.900-\mathrm{x})$
$24.3=24 x+2.50+23.4-26 x$
$2 \mathrm{x}=1.60$
$x=0.800$ i.e. percentage ${ }^{24} \mathrm{Mg}=80.0(\%)(80.0 \% 3 \mathrm{sf})$
${ }^{26} \mathrm{Mg}=0.900-0.800=0.100$ ie percentage ${ }^{26} \mathrm{Mg}=10.0(\%)$
(d) $m=25 / 1000 / 6.022 \times 10^{23}$
$\mathrm{v}^{2}=2 \mathrm{ke} / \mathrm{m}$ or $\mathrm{v}^{2}=\frac{2 \times\left(4.52 \times 10^{-16}\right) \times\left(6.022 \times 10^{23}\right)}{25 / 1000}$
$V=\sqrt{2.18 \times 10^{10}}=1.48 \times 10^{5}\left(\mathrm{~ms}^{-1}\right)$
$D=v t=1.48 \times 10^{5} \times 1.44 \times 10^{-5}$
$\mathrm{D}=2.13(\mathrm{~m})$

