

A-Level Chemistry

Mass Number and Isotopes

Question Paper

Time available: 63 minutes Marks available: 57 marks

www.accesstuition.com

Complete th	e table below to show the	numbers of neutrons and e	ectrons in the species
shown.	Number of protons	Number of neutrons	Number of electrons
⁴⁶ Ti	22		
⁴⁹ Ti ²⁺	22		
This sample	has a relative atomic mas	topes, ⁴⁶ Ti, ⁴⁷ Ti, ⁴⁸ Ti and ⁴⁹ T ss of 47.8 of isotopes ⁴⁶ Ti, ⁴⁷ Ti and ⁴⁹ T	
This sample In this samp	has a relative atomic mas	ss of 47.8 of isotopes ⁴⁶ Ti, ⁴⁷ Ti and ⁴⁹ T	
This sample In this samp	has a relative atomic mas ble the ratio of abundance	ss of 47.8 of isotopes ⁴⁶ Ti, ⁴⁷ Ti and ⁴⁹ T	
This sample In this samp	has a relative atomic mas ble the ratio of abundance	ss of 47.8 of isotopes ⁴⁶ Ti, ⁴⁷ Ti and ⁴⁹ T	

1.

A sample of krypton is ionised using electron impact. The mass spectrum of this sample of krypton has four peaks. The table shows data from this spectrum. m/z 82 83 84 86 Relative intensity 6 1 28 8 Calculate the relative atomic mass (A _r) of this sample of krypton. Give your answer to 1 decimal place.	The mass spectrum of this sample of krypton has four peaks. The table shows data from this spectrum. m/z 82 83 84 86 Relative intensity 6 1 28 8 Calculate the relative atomic mass (A_r) of this sample of krypton.	The mass spectrum of this sample of krypton has four peaks. The table shows data from this spectrum.	Define the term relative at	omic mass.			
The mass spectrum of this sample of krypton has four peaks. The table shows data from this spectrum. m/z 82 83 84 86 Relative intensity 6 1 28 8 Calculate the relative atomic mass (A_r) of this sample of krypton.	The mass spectrum of this sample of krypton has four peaks. The table shows data from this spectrum. m/z 82 83 84 86 Relative intensity 6 1 28 8 Calculate the relative atomic mass (A_r) of this sample of krypton.	The mass spectrum of this sample of krypton has four peaks. The table shows data from this spectrum.					
The mass spectrum of this sample of krypton has four peaks. The table shows data from this spectrum. m/z 82 83 84 86 Relative intensity 6 1 28 8 Calculate the relative atomic mass (A_r) of this sample of krypton.	The mass spectrum of this sample of krypton has four peaks. The table shows data from this spectrum. m/z 82 83 84 86 Relative intensity 6 1 28 8 Calculate the relative atomic mass (A_r) of this sample of krypton.	The mass spectrum of this sample of krypton has four peaks. The table shows data from this spectrum.					
The mass spectrum of this sample of krypton has four peaks. The table shows data from this spectrum. m/z 82 83 84 86 Relative intensity 6 1 28 8 Calculate the relative atomic mass (A_r) of this sample of krypton.	The mass spectrum of this sample of krypton has four peaks. The table shows data from this spectrum. m/z 82 83 84 86 Relative intensity 6 1 28 8 Calculate the relative atomic mass (A_r) of this sample of krypton.	The mass spectrum of this sample of krypton has four peaks. The table shows data from this spectrum.					
The mass spectrum of this sample of krypton has four peaks. The table shows data from this spectrum. m/z 82 83 84 86 Relative intensity 6 1 28 8 Calculate the relative atomic mass (A_r) of this sample of krypton.	The mass spectrum of this sample of krypton has four peaks. The table shows data from this spectrum. m/z 82 83 84 86 Relative intensity 6 1 28 8 Calculate the relative atomic mass (A_r) of this sample of krypton.	The mass spectrum of this sample of krypton has four peaks. The table shows data from this spectrum.					
The table shows data from this spectrum. m/z 82 83 84 86 Relative intensity 6 1 28 8 Calculate the relative atomic mass (A_r) of this sample of krypton.	The table shows data from this spectrum. m/z 82 83 84 86 Relative intensity 6 1 28 8 Calculate the relative atomic mass (A_r) of this sample of krypton.	The table shows data from this spectrum. m/z 82 83 84 86 Relative intensity 6 1 28 8 Calculate the relative atomic mass (A_r) of this sample of krypton.				ko	
m/z 82 83 84 86 Relative intensity 6 1 28 8 Calculate the relative atomic mass (A_r) of this sample of krypton.	m/z 82 83 84 86 Relative intensity 6 1 28 8 Calculate the relative atomic mass (A_r) of this sample of krypton.	m/z 82 83 84 86 Relative intensity 6 1 28 8 Calculate the relative atomic mass (A_r) of this sample of krypton.			on nas four pea	KS.	
Relative intensity 6 1 28 8 Calculate the relative atomic mass (A_r) of this sample of krypton.	Relative intensity 6 1 28 8 Calculate the relative atomic mass (A_r) of this sample of krypton.	Relative intensity 6 1 28 8 Calculate the relative atomic mass (A_r) of this sample of krypton.	The table shows data from	i triis spectrum.			
Calculate the relative atomic mass (A_r) of this sample of krypton.	Calculate the relative atomic mass (A_r) of this sample of krypton.	Calculate the relative atomic mass (A_r) of this sample of krypton.	m/z	82	83	84	86
			Relative intensity	6	1	28	8
			Give your answer to 1 dec	imal place.			

2.

(2)

	(c)	In a TOF mass spectrometer, ions are accelerated to the same kinetic energy (KE).	
		The kinetic energy of an ion is given by the equation $KE = \frac{1}{2}mv^2$	
		Where: KE = kinetic energy / J m = mass / kg $v = \text{speed / m s}^{-1}$	
		In a TOF mass spectrometer, each 84 Kr ⁺ ion is accelerated to a kinetic energy of 4.83×10^{-16} J and the time of flight is 1.72×10^{-5} s	
		Calculate the length, in metres, of the TOF flight tube.	
		The Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$	
		Length of flight tube r	n (4)
			(4) (Total 8 marks)
3.	This	question is about the isotopes of chromium.	
	(a)	Give the meaning of the term relative atomic mass.	
			_
			_
			_

	mass of 52.1
	The sample contains 86.1% of the ⁵² Cr isotope.
	Calculate the percentage abundance of each of the other two isotopes.
	Abundance of ⁵⁰ Cr % Abundance of ⁵³ Cr %
	State, in terms of the numbers of fundamental particles, one similarity and one difference between atoms of ⁵⁰ Cr and ⁵³ Cr
	Similarity
	Difference
	Difference
•	Difference
.	Difference
)	Difference sample of chromium is analysed in a time of flight (TOF) mass spectrometer. Give two reasons why it is necessary to ionise the isotopes of chromium before they can
e :	Difference

A sample of chromium containing the isotopes ⁵⁰Cr, ⁵²Cr and ⁵³Cr has a relative atomic

(b)

(e) A 53 Cr⁺ ion travels along a flight tube of length 1.25 m The ion has a constant kinetic energy (*KE*) of 1.102 × 10⁻¹³ J

$$KE = \frac{mv^2}{2}$$

m = mass of the ion / kg $v = \text{speed of ion / m s}^{-1}$

Calculate the time, in s, for the ⁵³Cr⁺ ion to travel down the flight tube to reach the detector.

The Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$

lime	 	 _ S	
			(5)

(Total 15 marks)

4. A sample of bromine was analysed in a time of flight (TOF) mass spectrometer and found to contain two isotopes, ⁷⁹Br and ⁸¹Br

After electron impact ionisation, all of the ions were accelerated to the same kinetic energy (KE) and then travelled through a flight tube that was 0.950 m long.

The 79 Br⁺ ions took 6.69 × 10⁻⁴ s to travel through the flight tube. (a) Calculate the mass, in kg, of one ion of ⁷⁹Br⁺ Calculate the time taken for the ⁸¹Br⁺ ions to travel through the same flight tube. The Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$ $KE = \frac{1}{2} mv^2$ where m = mass (kg) and $v = \text{speed (m s}^{-1})$ $v = \frac{d}{t}$ where d = distance (m) and t = time (s)Mass of one ion of ⁷⁹Br⁺ _____ kg Time taken by ⁸¹Br⁺ ions ______ s (5) Explain how ions are detected and relative abundance is measured in a TOF mass (b) spectrometer. (2) (Total 7 marks)

www.accesstuition.com

The	ixture of three compounds is analysed using a TOF mass spectrometer. mixture is ionised using electrospray ionisation. three compounds are known to have the molecular formulas: $ C_3H_5O_2N \\ C_3H_7O_3N \\ C_3H_7O_2 \ NS $	
(a)	Describe how the molecules are ionised using electrospray ionisation.	
		-
		-
		-
		-
		(3
(b)	Give the formula of the ion that reaches the detector first in the TOF mass spectrome	eter.
		(1
(c)	A sample of germanium is analysed in a TOF mass spectrometer using electron impainness.	act
	Give an equation, including state symbols, for the process that occurs during the ion of a germanium atom.	isation
		(1

Time of flight (TOF) mass spectrometry is an important analytical technique.

5.

(d)	In the TOF mass spectrometer, a germanium ion reaches the detector in 4.654×10^{-6} s	
	The kinetic energy of this ion is 2.438×10^{-15} J The length of the flight tube is 96.00 cm	
	The kinetic energy of an ion is given by the equation $KE = \frac{1}{2}mv^2$	
	where $m = \text{mass / kg}$	
	$v = \text{speed} / \text{m s}^{-1}$	
	The Avogadro constant $L = 6.022 \times 10^{23} \text{ mol}^{-1}$	
	Use this information to calculate the mass, in g, of one mole of these germanium ions. Use your answer to state the mass number of this germanium ion.	
	Mass of one mole of germanium ions g	
	Mass number of ion	
	(Tot:	(5) al 10 marks)
		,

In terms of sub-atomic particles, state the difference between the three isotopes of magnesium.
State how, if at all, the chemical properties of these isotopes differ.
Give a reason for your answer.
Chemical properties
Reason
²⁵ Mg atoms make up 10.0% by mass in a sample of magnesium.
Magnesium has $A_r = 24.3$
Use this information to deduce the percentages of the other two magnesium isotopes present in the sample.
²⁴ Mg percentage = %

6.

1	٦/	In a TOF mass spe	ctrometer ions are	accelerated to the	same kinetic energ	w (KE)
(u	iii a TOF iiiass spe	culonielei, ions are	accelerated to trie	Same kinetic energ	yy (r\⊏)

$$KE = \frac{1}{2}mv^2$$
 where $m = \text{mass (kg)}$ and $v = \text{velocity (m s}^{-1})$

$$v = \frac{d}{t}$$
 where $d = \text{distance (m)}$ and $t = \text{time (s)}$

In a TOF mass spectrometer, each $^{25}\text{Mg}^+$ ion is accelerated to a kinetic energy of 4.52×10^{-16} J and the time of flight is 1.44×10^{-5} s. Calculate the distance travelled, in metres, in the TOF drift region. (The Avogadro constant L = 6.022×10^{23} mol⁻¹)

Distance =	m
	(4)
	(Total 11 marks)