

A-Level Chemistry

Maxwell-Boltzmann Curves

Mark Scheme

Time available: 60 minutes Marks available: 58 marks

www.accesstuition.com

Mark schemes

2.	(a)	Number of molecules (with a particular energy) Ignore particles / atoms Allow amount or fraction or proportion for number	
	(b)	There are no molecules with no energy All molecules / particles have some energy Allow particles / atoms	
	(c)	Most probable / common / modal energy	
	(d)	M1 Peak should be at same energy (i.e. in line with X) M1 and M2 marked independently 1	
		M2 Overall area should be half the original area; after diverging from the origin, the second line should not touch the first line M2 area should be about half of the original 1	[5]
	(a)	energy Ignore reference to any units (e.g. J, kJ, J mol ⁻¹ , kJ mol ⁻¹) particles molecules kinetic NOT mean energy or average energy NOT E	
	(b)	 maximum peak height is lower and displaced to the right of the original all of the following starts at the origin but does not follow the original line shows separation as soon as possible from the original line crosses the original curve once only similar area to original curve an attempt has been made to draw the new curve correctly towards the energy axis above the original curve but not to touch the original curve (or axis) 	

- (c) **M1** an increase in the number/amount/proportion/fraction of molecules with $E \ge E_a$ / with activation energy
 - or more molecules have $E \ge E_a$ / with activation energy
 - or more molecules have enough / sufficient energy (to react)

M1

Ignore

- Molecules have more energy
- More energetic collisions
- More collisions

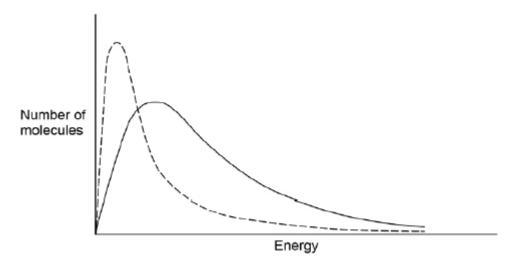
Allow $E > E_a$ in place of $E \ge E_a$

Credit particles for molecules (but not atoms)

Penalise for M1 reference to increased activation energy

- M2 more successful / effective / productive collisions in a given time / period
- or higher rate of successful / effective / productive collisions
- **or** higher frequency of successful / effective / productive collisions

*M*2


Must refer to <u>both</u> idea of successful / effective / productive collisions and the rate / frequency of collisions Ignore 'chance of collision'

[5]

1

1

3. (a)

M1 Curve is higher and displaced to the left M2 Only crosses the original curve once

(b) Rate of reaction decreases (no mark)

Fewer particles will have energy greater than or equal to the activation energy

Fewer <u>successful</u> collisions in a given time

Less frequent <u>successful</u> collisions

1

2

www.accesstuition.com

1

	(c)	The amount of gas present (or number of molecules) has been reduced / or the pressure has been reduced	1	
		Rate of reaction decreases (no mark)		
		Particles are spread further apart	1	
		Fewer collisions between gas particles so fewer successful collisions	1	
4.	(a)	Amount / number / proportion / percentage / fraction / moles of molecules / particles Penalise an incorrect qualification of the number eg NOT number of molecules with E greater than Ea. Not 'atoms'.	1	[7]
	(b)	There are no molecules / particles with zero energy		
		OR		
		All of the molecules / particles are moving / have some energy Not 'atoms'.		
		The answer should relate the energy to the molecules.	1	
	(c)	C (The most probable energy)	1	
	(d)	M1 The peak of the new curve is displaced to the right and lower than the original		
		M2 All of the following needed		
		 The new curve starts at the origin and should begin to separate from the original almost immediately 		
		and the new curve only crosses the original curve once		
		 and the total area under the new curve is approximately the same as the original 		
		and an attempt has been made to draw the new curve correctly towards the axis above the original curve but not to touch the original curve	2	
	(e)	None / no effect / stays the same		
			1	[6]

5.

(a) M1 On the energy axis E_{mp} at the maximum of the original peak

M1 The limits for the horizontal position of E_{mp} are defined as above the word "the" in the sentence below the graph.

M2 The peak of their new curve is <u>displaced to the left and higher</u> than the original.

M3 All of the following are required

- The new curve starts at the origin and should begin to separate from the original almost immediately
- and the new curve crosses the original curve once
- and an attempt has been made to draw the new curve correctly towards the energy axis below the original curve but not to touch the original curve or the axis

(b) The rate of reaction decreases as the temperature decreases because

M1 A decrease in the number / proportion of molecules with $E \ge E_a$

OR fewer molecules have $E \ge E_a$

OR fewer molecules have sufficient / enough energy to react / decompose

In M1

Ignore "molecules have less energy".

Ignore "less energetic collisions".

Ignore "molecules do not gain activation energy".

Ignore "fewer collisions".

Credit "particles" for "molecules" but NOT "atoms".

M2 Fewer effective / productive / successful collisions in a given time / given period

OR fewer frequent effective / productive / successful collisions

OR lower rate of effective / productive / successful collisions

Ignore "chance of collision"; this alone does not gain M2

2

[5]

3

6.

(a) (i) Curve drawn from origin with peak clearly lower and to right.

New curve crosses original once only, finishes above original and does **not** clearly curve up

IGNORE relative areas

 (ii) (Relative areas under curves indicate) many (owtte) more molecules with E greater than or equal to Ea (at higher T) or reverse argument

ALLOW 'particles'

IGNORE 'atoms'

(Large) increase in (number of) <u>successful</u> (owtte) <u>collisions per unit</u> time OR '<u>frequency</u> of successful <u>collisions</u>'

1

1

1

	(b)	(i)	Yield increases Yield decreases/stays the same CE = 0		
			If not answered mark on		
			More moles/molecules (of gas) on left/fewer on right/3 on left 1 on right	1	
			Equilibrium shifts/moves (to right) to reduce pressure/oppose higher pressure No M3 if 'more moles on right' in M2	1	
			IGNORE favours'		
			NOT just 'oppose the change'		
			QoL means that M3 is only awarded if these ideas are clearly linked in one statement	1	
				1	
		(ii)	Higher T would increase rate but decrease yield/make less methanol		
			OR Lower T decreases rate but increases yield;		
			If no mention of both rate AND (idea of) yield max 1		
				1	
			Chosen T is a compromise/balance (between rate and yield) owtte	1	
				1	[8]
_	(a)	Numl	ber / proportion / percentage / fraction of molecules		
7.			Ignore "particles"		
				1	
	(b)	None	e <i>OR</i> no effect <i>OR</i> no change		
				1	
	(c)	X			
				1	
	(d)	Ansv	vers in either order		
		M1 c	collision <i>OR</i> collide		
			Mark independently		
		M2 c	collision / molecules / particles		
			Ignore "correct" amount of energy		
		٧	vith the <u>activation</u> energy		
		(\mathbf{DR} with $\mathbf{E} \geq \mathbf{E}_{act}$		
			OR with sufficient /enough energy		
		(OR with the minimum energy		
		(OR with the correct orientation	2	
				4	

(e) A small increase in temperature results in <u>many more / much higher proportion of / a lot more / significantly more molecules / particles / collisions with $E \ge E_{act}$ / energy greater than the activation energy / sufficient energy / enough energy / minimum energy to react</u>

(compared with a small increase in concentration)

Not just "more molecules with $E \ge E_{act}$ "

The answer must convey that the increase is significant

Accept reference to "atoms", "molecules", "particles"

Ignore "species"

1

[6]

8.

- (a) (i) M1 The peak of the new curve is displaced to the right.
 - M2 All of the following are required
 - The new curve starts at the origin
 - The peak of the new curve is <u>lower</u> than the original
 - and the new curve only crosses the original curve once
 - and an attempt has been made to draw the new curve correctly towards the energy axis but not to touch the original curve
 - the new curve must not start to diverge from the original curve M1 is low demand M2 is higher demand.
- 2
- (ii) M1 Increase in the number/proportion of molecules with $E \ge E_a$
 - OR more molecules have E ≥ Ea
 - OR <u>more molecules</u> have <u>sufficient energy to react</u>
 - M2 More effective/productive/successful collisions

Ignore "molecules have more energy"

Ignore "more energetic collisions"

Ignore "molecules gain activation energy"

Ignore "more collisions"

Accept "particles" for "molecules" but NOT "atoms"

Ignore "chance of collision"; this alone does not gain M2

(b) (i) Iron *OR* Fe

1

2

		(ii)	M1 Catalysts provide an alternative route/pathway/mechanism		
			OR		
			(in this case) surface adsorption/surface reaction occurs. For M1, not simply "provides a surface" alone		
			M2 that has a lower activation energy		
			OR		
			lowers the activation energy For M2, the candidate may use a definition of activation energy without referring to the term		
				2	[7]
9.	(a)	(i)	Z (1)	1	
		(ii)	Collisions (1)		
			Cause some molecules to slow down or lose energy (1)	2	
	(b)	Curv	ve starts at origin and is displaced to the right (1)		
		Curv	ve lower and does not touch energy axis (1)	2	
	(c)	(i)	Only a small percentage/very few collisions have $E > E_a$ (1)	1	
		(ii)	Add a catalyst (1)		
			Lowers E_a (1)		
			More collisions/molecules have energy > E_a (1)	3	[9]