

A-Level Chemistry

Optical Isomerism

Mark Scheme

Time available: 54 minutes Marks available: 50 marks

1. (a) Structure of \mathbf{P} :

Structures of \mathbf{Q} and \mathbf{R} :

(1)
and

(1)
Q and R in any order
(b) (i) Racemic mixture: equal mixture of optical isomers / enantiomers OR in explanation

Explanation: planar (>C=O) (1) attack from either side is equally likely (1)
(ii) Reagent S: HCN or $\left(\mathrm{KCN} / \mathrm{HCl}\right.$ or $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right)(1)$

Compound \mathbf{T} :

(1)

2. (a) 3
(b) Chain.
(c)

One 3D enantiomer.

Second enantiomer correctly drawn as 3D mirror image of first.
(d) Plane-polarised light.

Rotated in opposite directions.
(e) Elimination

M1

Mechanism (3 marks)
M2 arrow from lone pair on O to H^{+}

M3 $1^{\text {st }}$ intermediate and arrow from $\mathrm{C}-\mathrm{O}^{+} \mathrm{H}_{2}$ bond to O (with loss of $\mathrm{H}_{2} \mathrm{O}$)
M4 2nd intermediate (carbocation) and arrow from $\mathrm{C}-\mathrm{H}$ bond to $\mathrm{C}-\mathrm{C}$ (with loss of H^{+}) to form $\mathrm{C}=\mathrm{C}$

M3 and M4 can be scored in one step (see alternative mechanism below).
If carbocation incorrect then answer cannot score maximum marks.
Explanation of formation of 3 alkenes
M5 loss of H^{+}from C (in carbocation) adjacent to ${ }^{+} \mathrm{C}$ (to which -OH was attached)
M6 From ${ }^{1} \mathrm{C}-{ }^{2} \mathrm{C}+-^{3} \mathrm{C}-{ }^{4} \mathrm{C}$ leads to but-1-ene
M7 From ${ }^{1} \mathrm{C}-{ }^{2} \mathrm{C}^{+}-{ }^{3} \mathrm{C}-{ }^{4} \mathrm{C}$ leads to but-2-ene
M8 But-2-ene formed as mixture of $E-Z$ isomers

Alternative mechanism

3. (a) 2-hydroxyhexanenitrile
(b) (Plane) polarised light

Enantiomers would rotate light in opposite directions
not different alone
(c) planar carbonyl group or
planar

Not planar molecule,
not planar bond, not planar $C=O$

Attack from either side

With equal probability
OR produces equal amounts (of the two isomers/enantiomers)
(d)

Does not contain a chiral centre
OR does not contain C attached to 4 different groups
OR contains two identical/ethyl groups
OR symmetrical (product)
Allow $\mathrm{C}_{2} \mathrm{H}_{5}$ or skeletal

M2 dependent on correct M1 (No structure = 0)
If pentan-3-one drawn then allow symmetrical ketone for M2
4. (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}+2[\mathrm{H}] \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
(b) This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.

All stages are covered and the explanation of each stage is generally correct and virtually complete.

Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 then stage 3.

Level 3
5-6 marks
All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete.

Answer is mainly coherent and shows progression from stage 1 to stage 3.
Level 2 3-4 marks

Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete.

Answer includes isolated statements but these are not presented in a logical order or show confused reasoning.

Level 1 1-2 marks

Insufficient correct chemistry to gain a mark.
Level 0 0 marks

Indicative Chemistry content

Stage 1: Formation of product

- Nucleophilic attack
- Planar carbonyl group
- $\quad \mathrm{H}^{-}$attacks from either side (stated or drawn)

Stage 2: Nature of product

- Product of step 1 shown
- This exists in two chiral forms (stated or drawn)
- Equal amounts of each enantiomer / racemic mixture formed

Stage 3: Optical activity

- Optical isomers / enantiomers rotate the plane of polarised light equally in
- With a racemic / equal mixture the effects cancel

5. (a) (i) Nucleophilic addition

Any extra loses the mark
Allow minor spelling errors e.g. nucleophyllic
(ii)

M1 for arrow from lone pair on oxygen in ethanol to C of $C=O$ (or to space half way between O and C)
M2 for arrow from C=O bond to oxygen in ethanal
Do not allow M2 as first step without nucleophilic attack, but can allow M1 for attack on C+ produced

+ rather than $\delta+$ on $\mathrm{C}=\mathrm{O}$ loses M2
Ignore any further steps
Mark independently
(b) (i) Equal mixture of enantiomers/optical isomers OWTTE

Ethanol 4.16
Allow 4.2 for ethanol
$K_{\mathrm{c}}=\frac{[\text { acetal }]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{CHO}\right]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right]^{2}}$ or with names
(ii)

$$
\frac{(0.37 / 0.31)(0.65 / 0.31)}{(0.58 / 0.31)(3.76 / 0.31)^{2}} \text { OR } \frac{(0.37)(0.65)}{(0.58)(3.76)^{2}} \times 0.31
$$

Ignore slips in acetal structure or formula $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{2}$
If K_{c} wrong, allow M4 only for units conseq to their K_{c} If volume omitted (gives 2.93×10^{-2}) may only score M1 and M4
If volume used $=310 \mathrm{~cm}^{3}$ allow M2 then award M3 for $9.08-9.23$ only and M4 for $\mathrm{mol}^{-1} \mathrm{~cm}^{3}$ only
Treat error in converting $310 \mathrm{~cm}^{3}$ to dm^{3} as $A E$
9.1×10^{-3}
Allow range $9.08 \times 10^{-3}-9.23 \times 10^{-3}$
$\mathrm{mol}^{-1} \mathrm{dm}^{3}$
Not moles ${ }^{-1} \mathrm{dm}^{3}$
(d)

