

A-Level Chemistry

Organic Synthesis

Mark Scheme

Time available: 78 minutes Marks available: 72 marks

www.accesstuition.com

Mark schemes

1.

(a) Dehydration

Allow (acid catalysed) Elimination

M1

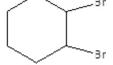
Conc H₂SO₄

Allow Conc H₃PO₄

M2

(b) Br_2

Allow bromine (water)


Allow Cl₂ or l₂

Allow O2 if epoxide route used

M1

+ Br₂

allow conseq equation to H₂, H₂O, HBr, HCl. HI and H₂SO₄ An epoxide is a feasible alternative that could score here and consequentially M3 and M4

M2

NaOH

Or KOH or other suitable strong alkali

M3

Allow this equation with molecular formulae

M4

(c) M1 (nucleophilic)addition-elimination

Note lone pair required for M5

M1

M2 curly arrow from Ip on O to C

M3 curly arrow from double bond to O

M4 for structure of intermediate

M5 for 3 curly arrows

M2

M3 M4

M5

(d) Less energy used **OR** Better yield

OR reduces practical losses, simpler plant,

M1

M2

Less waste **OR** Less pollution

OR maximises the use of raw materials in the process into useful products, saves resources

[13]

(a) <u>3</u>-bromo-(2)-methylpropan-<u>1</u>-ol ONLY

2.

3 and 1 are essential, 2 may be omitted, but any other number here is wrong

Ignore hyphens and commas

1

(b) Bromine is more electronegative than carbon

Allow difference in electronegativity if polarity of bond shown

M1

C is partially positive / electron deficient

M2 and M3 can be awarded from diagram that shows nucleophilic attack

M2

Lone/electron pair (on the nucleophile) donated to the partially positive carbon

Allow lone pair attracted to / attacks the partially positive carbon

М3

Must be displayed with all bonds shown

Not need be displayed

See General Marking instructions section 3.12 for penalties for incorrectly drawn bonds such as C–HO or C–NC etc.

KCN & (dil) acid

Allow

Allow HCN

Ignore alcoholic solvents

Penalise conc. HCl, H₂SO₄ or any HNO₃

(a) 2,3-dimethylbutane(-1,4-)dioic acid Penalise other numbers.

Ignore hyphens, commas, spaces.

1

1

[7]

(b)

$$H_3C$$
 CH_3 OR Br Br Br

Allow displayed formula

Step 1:

HBr

Electrophilic addition

Liectroprillic addition

Step 2:

KCN

Not HCN, not KCN with acid.

Nucleophilic substitution

Step 3:

Hydrolysis

www.accesstuition.com

1

1

1

1

1

(c)

	Mark
Reagent	1
Observation with F	1
Observation with G	1

K ₂ Cr ₂ O ₇ & H ₂ SO ₄ (allow acidified)	Mg	Na ₂ CO ₃ or NaHCO ₃
F: no visible change	F: effervescence	F: effervescence
G: orange to green	G: no visible change	G: no visible change

Named alcohol and conc. sulfuric acid	Named carboxylic acid and conc. sulfuric acid
F: pleasant smell	F: no visible change
G: no visible change	G: pleasant smell

(d)

OR

Two ester groups.

One unit only.

Must have trailing bonds.

Ignore n and brackets.

1

(e) Mass of $G = (1.11 \times 10^3) \text{ cm}^3 \times 1.04 \text{ g cm}^{-3} = 1154 \text{ g}$ 65.1 scores 4 marks.

1

Amount of **G** $\frac{1154}{Mr = 118} = 9.78$ mols

1

Amount of **F** (actual) = $\frac{930}{Mr = 146}$ =

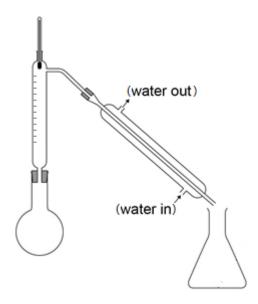
6.37 mol

OR

Expected mass of \mathbf{F} = 9.78 × ($M_{\rm r}$ =)

146 = 1428 g

1


% yield =
$$\frac{6.37}{9.78}$$
 × 100 = 65.1(%)

OR

% yield =
$$\frac{930}{1428}$$
 × 100 = 65.1(%)

M4 answer must be to 3 significant figures.

(f) Fractional distillation

A rough labelled sketch illustrating these points scores the marks.

Apparatus for fractional distillation must clearly work with fractionating column.

Fractionating column and thermometer.

Condenser / water jacket. Ignore heat source.

[20]

1

1

1

1

(a) M1 NaOH

Only score M2 if M1 gained, but mark on from hydroxide. Mention of acid loses M1 & M2

M2 Aqueous/(warm)

Ignore alcoholic / conc / dil.

M3 (Fractional) distillation or described

Not just evaporation; not reflux

Allow chromatography

1

1

M1	S is CH ₃ CH(CN)CH ₂ CH ₃ Allow without brackets	1
Step	3	
M2	KCN (mark on from CN ⁻) Not HCN, not KCN with acid	1
М3	Alcoholic / (aqueous) Allow ethanolic Can only score M3 if M2 gained	1
Step	4	
M4	H_2	
	LiAlH ₄	
	Na Can only score M5 if M4 gained	1
M5	Ni or Pt or Pd	
	Ethoxyethane or ether	
	LiAlH ₄ with acid loses both M4 and M5	
	Ignore 'followed by acid'	
	Na	
	Ethanol NOT NaBH ₄ OR Sn/HCl Penalise other extras as list Ignore pressure or temperature	1

(b)

www.accesstuition.com

[8]

HBr

In any step, if wrong reagent or extra wrong reagent, can only score mechanism mark, but if $AlCl_3$ added in Step 3, lose M7 but can score M8 & M9

M1

1

M2

1

electrophilic addition

If 1-bromobutane structure given for M2 then 1-aminobutane structure for M5, penalise M2 and M5 but mark M8 consequentially

М3

1

Step 2

 NH_3

M4

1

If 1-bromobutane structure given for M2 then 2-aminobutane structure for M5, penalise M2, M5 and M8

M5

1

nucleophilic substitution

If 2-bromobutane structure given for M2 then 1-aminobutane structure, penalise M5 and M8

M6

CH₃COCI or (CH₃CO)₂O

Allow C₂H₅ for CH₃CH₂

M7

1

M8

1

(nucleophilic) addition-elimination

Not allow (electrophilic) addition-elimination

M9

1

[9]

(a) CH_3COCI or $(CH_3CO)_2O$ (1)

6.

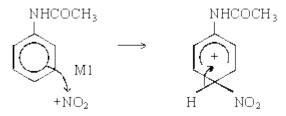
 $AICI_3$ or H_2O or CH_2SO_4 loses this mark CH_3COOH loses reagent and M3, $M4 = max\ 3$

nucleophilic addition-elimination (1)

$$(Ph)NH_2 \longrightarrow Cl \longrightarrow Cl \longrightarrow M2 \longrightarrow H Cl$$

$$(Ph)NH_2 \longrightarrow Cl \longrightarrow M2 \longrightarrow H Cl$$

M3: structure


M4: 3 correct arrows

Allow M1 for attack on CH3-C+=O

Penalise CI⁻ removing H⁺

(b) Conc HNO₃ (1)
Conc H₂SO₄ (1)
HNO₃ + 2 H₂SO₄
$$\rightarrow$$
 NO₂⁺ + H₃O⁺ + 2 HSO₄⁻ (2)
(or H₂SO₄) (or H₂O + HSO₄⁻)
 $\frac{HNO_3}{H_2SO_4}$ scores 1
Any 2

electrophilic substitution (1)

M2 structure M3 arrow

(c) Sn (or Fe) / HCl or Ni / H_2 (1) NOT LiAIH₄ NaBH₄

$$\begin{bmatrix} \bigcirc & \bigcirc & H & H \\ \parallel & \mathbf{I} & \mathbf{I} & \\ - \Box - (\Box H_2)_3 - \Box - \mathbf{N} - \mathbf{N} - \end{bmatrix}$$
(1)

[15]

6