

## **A-Level Chemistry**

## **Oxidation of Alcohols**

**Question Paper** 

Time available: 88 minutes Marks available: 73 marks

www.accesstuition.com

- 1.
- Propanone can be made by reacting propan-2-ol with an excess of acidified potassium dichromate(VI).

The propanone is removed from the reaction mixture by distillation.

(a) The figure below shows the apparatus set up by a student to make propanone by this method. Suitable clamps are used to hold all the apparatus firmly in place.



There are **three** problems with the apparatus set up in the figure above.

For each problem:

- identify the problem
- describe the issue it would cause

| • | suggest how the problem can be solved. |
|---|----------------------------------------|
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |

Another student completes the experiment using apparatus that is set up correctly.

(b) The student reacts 2.0 cm<sup>3</sup> of propan-2-ol (CH<sub>3</sub>CH(OH)CH<sub>3</sub>) with an excess of acidified potassium dichromate(VI).

The student obtains 0.954 g of propanone (CH<sub>3</sub>COCH<sub>3</sub>).

Calculate the percentage yield of propanone in this experiment. Give your answer to the appropriate number of significant figures.

Density of propan-2-ol =  $0.786 \text{ g cm}^{-3}$ 

| Percentage yield |  |
|------------------|--|
|                  |  |

(4)

(c) Molecules of propan-2-ol and propanone each contain three carbon atoms.

Complete the table below to suggest the shape and a bond angle around the central C atom in a molecule of each compound.

| Compound                         | propan-2-ol<br>CH <sub>3</sub> CH(OH)CH <sub>3</sub> | propanone CH <sub>3</sub> COCH <sub>3</sub> |
|----------------------------------|------------------------------------------------------|---------------------------------------------|
| Shape around central C atom      |                                                      |                                             |
| Bond angle around central C atom |                                                      |                                             |

(2)

| <br> | <br> | <br> |
|------|------|------|
|      |      |      |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
|      |      |      |
| <br> | <br> |      |
|      |      |      |
|      |      |      |
| <br> | <br> | <br> |

(3) (Total 15 marks)

A student plans an experiment to investigate the yield of propanoic acid when a sample of propan-1-ol is oxidised.

The figure below shows the apparatus that the student plans to use for the experiment.

The student's teacher says that the apparatus is not safe.



| 2                        |                                                              |  |
|--------------------------|--------------------------------------------------------------|--|
| Give <b>one</b> addition | nal reagent that is needed to form any propanoic acid.       |  |
|                          | mistakes in the way the apparatus is set up in above figure. |  |
| 2                        |                                                              |  |
| State the purpose        | e of the small glass beads in the flask in above figure.     |  |
|                          |                                                              |  |

| After correcting the mistakes, the student heats a reaction mixture containing 6.50 g of propan-1-ol with an excess of the oxidising agent.  The propanoic acid separated from the reaction mixture has a mass of 3.25 g | П                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| State the name of the technique used to separate the propanoic acid from the reactio mixture.                                                                                                                            | n                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Calculate the percentage yield of propanoic acid.                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Technique                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Percentage yield                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                          | (4)                                                                                                                                                                                                                                                                                                                                                                                                                              |
| State a simple chemical test that distinguishes the propanoic acid from the propan-1-o                                                                                                                                   | ol.                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Give <b>one</b> observation for the test with each substance.                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Propanoic acid                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Propan-1-ol                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                          | (3)                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                          | The propanoic acid separated from the reaction mixture has a mass of 3.25 g  State the name of the technique used to separate the propanoic acid from the reactio mixture.  Calculate the percentage yield of propanoic acid.  Technique  Percentage yield  State a simple chemical test that distinguishes the propanoic acid from the propan-1-or Give one observation for the test with each substance.  Test  Propanoic acid |

www.accesstuition.com

| order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried der reflux.                              | d out |
|-----------------------------------------------------------------------------------------------------------------------------------|-------|
| escribe what happens when a reaction mixture is refluxed and why it is necessary, in se, for complete oxidation to ethanoic acid. | this  |
|                                                                                                                                   |       |
|                                                                                                                                   |       |
|                                                                                                                                   |       |
|                                                                                                                                   |       |
|                                                                                                                                   |       |
|                                                                                                                                   |       |

Ethanol can be oxidised by acidified potassium dichromate(VI) to ethanoic acid in a two-step

3.

(c) The boiling points of the organic compounds in a reaction mixture are shown in the following table.

| Compound           | ethanol | ethanal | ethanoic acid |
|--------------------|---------|---------|---------------|
| Boiling point / °C | 78      | 21      | 118           |

|                                       |                 |              |                |                | <del></del> |
|---------------------------------------|-----------------|--------------|----------------|----------------|-------------|
|                                       |                 |              |                |                |             |
|                                       |                 |              |                |                |             |
|                                       |                 |              |                |                |             |
|                                       |                 |              |                |                |             |
|                                       |                 |              |                |                |             |
| e your knowledge<br>anal in this way. | of structure an | d bonding to | explain why it | is possible to | separate    |
| ariai iii tiilo way.                  |                 |              |                |                |             |
|                                       |                 |              |                |                |             |
|                                       |                 |              |                |                |             |

(d)

| ( | ۵) | A student obtained a sam | nole of a lic             | nuid usina the   | annaratus in i    | nart (c)          |
|---|----|--------------------------|---------------------------|------------------|-------------------|-------------------|
| l | c, | A Student obtained a san | ipi <del>c</del> oi a iic | quiu usiriy irie | ; apparatus iii j | part <b>(6)</b> . |

| escribe how the student could use chemical tests to confirm that the liquid contath thanal and did <b>not</b> contain ethanoic acid. | ined |
|--------------------------------------------------------------------------------------------------------------------------------------|------|
|                                                                                                                                      |      |
|                                                                                                                                      |      |
|                                                                                                                                      |      |
|                                                                                                                                      |      |
|                                                                                                                                      |      |
|                                                                                                                                      |      |
|                                                                                                                                      |      |
|                                                                                                                                      |      |
|                                                                                                                                      |      |

(5) (Total 16 marks)

**4.** This question concerns the oxidation of a primary alcohol.

The experiment was carried out using the distillation apparatus shown in the diagram. The oxidation product was distilled off as soon as it was formed.



| (a) | Suggest the identity of reagent P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| (b) | State the chemical change that causes the solution in the flask to appear green at the of the reaction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1<br>e end              |
| (c) | Give <b>one</b> reason why using a water bath is better than direct heating with a Bunsen better heating with a Bu | (1<br>ourner.            |
| (d) | Suggest a reagent that could be used to confirm the presence of an aldehyde in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1                       |
| (u) | distillate.  State the observation you would expect to make if an aldehyde were present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |
|     | Reagent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |
|     | Observation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _<br>(2<br>Total 5 marks |
|     | sider the following reaction schemes involving two alcohols, <b>A</b> and <b>B</b> , which are ition isomers of each other.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |
|     | $\begin{array}{cccc} CH_3CH_2CH_2CH & \to & CH_3CH_2CHO & \to & CH_3CH_2CH_2COOH \\ \mathbf{A} & & butanal & & butanoic \ acid \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |
|     | $CH_3CH_2CH(OH)CH_3 \rightarrow CH_3CH_2COCH_3$ <b>B C</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| (a) | State what is meant by the term position isomers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |
| (b) | Name compound <b>A</b> and compound <b>C</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2                       |
| (b) | Name compound <b>A</b> and compound <b>C</b> .  Compound <b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2                       |
| (b) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . (2                     |

| (i)   | State the type of reaction.                                                                                     |
|-------|-----------------------------------------------------------------------------------------------------------------|
| (ii)  | Identify a suitable combination of reagents.                                                                    |
| (iii) | State how you would ensure that compound <b>A</b> is converted into butanoic acid rather than into butanal.     |
| (iv)  | Draw the structure of an isomer of compound <b>A</b> which does not react with this combination of reagents.    |
| (v)   | Draw the structure of the carboxylic acid formed by the reaction of methanol with this combination of reagents. |
| (i)   | State a reagent which could be used to distinguish between butanal and compound                                 |

|     |      | (2)                                                                                                                             |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------|
|     |      | (Z)<br>(Total 12 marks)                                                                                                         |
| (a) |      | of the isomers in part (a) is resistant to oxidation by acidified potassium omate(VI).                                          |
|     | (i)  | Identify this isomer.                                                                                                           |
|     | (ii) | This isomer can be dehydrated. Give a suitable dehydrating agent and write an equation for this dehydration reaction.           |
|     |      | Dehydrating agent                                                                                                               |
|     |      | Equation                                                                                                                        |
| (b) | (i)  | Identify the isomer in part (a) which can be oxidised to a ketone. Give the structure of the ketone formed.  **Isomer           |
|     |      | Structure of the ketone                                                                                                         |
|     |      |                                                                                                                                 |
|     | (ii) | Identify <b>one</b> of the isomers in part (a) which can be oxidised to an aldehyde. Give the structure of the aldehyde formed. |
|     |      | Isomer                                                                                                                          |
|     |      | Structure of the aldehyde                                                                                                       |
|     |      |                                                                                                                                 |

Draw the structure of another aldehyde which is an isomer of butanal.

(ii)

6.

| (iii) | Give a reagent that can be used in a test to distinguish between a ketone and an aldehyde. State what you would observe in the test.                  |        |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|       | Reagent                                                                                                                                               |        |
|       | Observation with ketone                                                                                                                               |        |
|       | Observation with aldehyde                                                                                                                             |        |
|       |                                                                                                                                                       |        |
|       | an-1-ol can be oxidised to form a carboxylic acid. Using [O] to represent the oxidising nt, write an equation for this reaction and name the product. |        |
| Equ   | uation                                                                                                                                                |        |
| Nar   | me of product                                                                                                                                         |        |
|       |                                                                                                                                                       |        |
|       | (Total 1                                                                                                                                              | 2 mari |