

A-Level Chemistry

Ozone Depletion

Mark Scheme

Time available: 64 minutes Marks available: 60 marks

Mark schemes

1. (a) trichlorofluoromethane
(b)

1
(c) M1 amount of CFC-11 $=\frac{500}{137.5}(=3.64) \mathrm{mol}$ Allow ECF from M1 to M2

M2 molecules of $\mathrm{O}_{3}=3.64 \times 100,000 \times 6.022 \times 10^{23}=2.19 \times 10^{29}$
Allow answers in range 2×10^{29} to 2.20×10^{29} (1sf is acceptable as this is an estimate)
(d) Absorbs (harmful) ultraviolet / uv (light / radiation)

Protects us from (harmful) uv Ignore other wavelengths / types of light
(e) One of these reasons:

- lack of evidence that ozone was being depleted
- lack of alternatives to CFCs
- commercial interest to continue to use CFCs
- hard to obtain international agreement
(f) M1 absorbs infrared radiation

M1 idea of IR being taken in

M2 molecule has polar bonds
M2 accept polar molecule
2. (a) Absorbs/prevents harmful uv

Allow reduced risk of skin cancer from uv
(b) $\mathrm{C}-\mathrm{Cl}$ bonds broken (homolytically)

Could show in an equation showing the bond
(c) $\mathrm{Cl} \bullet+\mathrm{O}_{3} \rightarrow \mathrm{ClO} \bullet+\mathrm{O}_{2}$
$\mathrm{ClO} \bullet+\mathrm{O}_{3} \rightarrow \mathrm{Cl} \bullet+2 \mathrm{O}_{2}$
(d) $\mathrm{Cl} \bullet+\mathrm{CH}_{2} \mathrm{~F}_{2} \rightarrow$

Penalise missing dot once only
$\rightarrow \mathrm{CHClF}_{2}+\mathrm{Cl} \bullet$

Propagation
3. (a)

(b) Initiation: $\mathrm{CCl}_{2} \mathrm{FCF}_{2} \mathrm{Cl} \longrightarrow \mathrm{Cl} \cdot+\mathrm{CCl}_{2} \mathrm{FCF}_{2}$.

Allow initiation equations where more than one $\mathrm{Cl} \bullet$ is formed
1

1
$\mathrm{ClO} \cdot+\mathrm{O}_{3} \longrightarrow \mathrm{OO}_{2}+\mathrm{Cl} \cdot$
(c) Acts as a catalyst
(d) B

$$
\mathrm{Cl} \cdot+\mathrm{O}_{3} \longrightarrow \mathrm{ClO} \cdot+\mathrm{O}_{2}
$$

(e) 1,1,1,2-tetrafluoroethane
(f) lodine is bigger than fluorine so the van der Waals forces between CH_{3} I molecules are stronger than those between $\mathrm{CH}_{3} \mathrm{~F}$ molecules

The dipole-dipole forces between $\mathrm{CH}_{3} \mathrm{~F}$ molecules are stronger than those between CH_{3} I molecules

Or vice versa

The van der Waals forces are stronger than the dipole-dipole forces so these dominate
4.
(a) UV light
$\mathrm{CCl}_{4} \longrightarrow \mathrm{CCl}_{3}{ }^{\bullet}+\cdot \mathrm{Cl}$
(b) $\mathrm{Cl} \cdot+\mathrm{O}_{3} \longrightarrow \mathrm{ClO} \cdot+\mathrm{O}_{2}$
$\mathrm{ClO} \cdot+\mathrm{O}_{3} \longrightarrow \mathrm{Cl} \cdot+2 \mathrm{O}_{2}$
1

1

Molecules in $500 \mathrm{~cm}^{3}=\left(1.02 \times 10^{21} \times 500 \times 10^{-6}\right) / 100$
$=5.10 \times 10^{15}$
Allow answer in the range $5.10-5.13 \times 10^{15}$
Answer must be given to this precision
5. (a) $\mathrm{M} 1 \bullet \mathrm{Cl}+\mathrm{O}_{3} \rightarrow \bullet \mathrm{ClO}+\mathrm{O}_{2}$

M1 and M2 could be in either order
Credit the dot anywhere on the radical
Penalise absence of dot once only
Individual multiples acceptable but both need to be doubled if
two marks are to be awarded
Ignore state symbols
(b)
 Must be displayed formula
(c) Does not contain Cl or does not release Cl (atoms/radicals) or no $\mathrm{C}-\mathrm{Cl}$ bonds or C-F bond(s) strong / does not break / no F (atom/radicals) released
(d) $\mathrm{M} 1 \quad \mathrm{CHF}_{2} \mathrm{CH}_{3}+\bullet \mathrm{F} \rightarrow \bullet \mathrm{CF}_{2} \mathrm{CH}_{3}+\mathrm{HF}$

M2 $\bullet \mathrm{CF}_{2} \mathrm{CH}_{3}+\mathrm{F}_{2} \rightarrow \mathrm{CF}_{3} \mathrm{CH}_{3}+\bullet \mathrm{F}$
1

M1 and M2 could be in either order
Credit the dot anywhere on the radical
Penalise absence of dot once only
(e) M1 moles $\mathrm{CF}_{3} \mathrm{CH}_{3}=1410 / 84(.0)(=16.8,16.79 \mathrm{~mol})$

M2 molecules $=\mathrm{M} 1 \times 6.022 \times 10^{23}=1.01 \times 10^{25}$ (3sf only)
Correct answer scores both marks
Allow M2 for M1 \times Avogadro with answer to 3 sf (but must have attempted to calculate moles for M1) Ignore incorrect units
(f) (bonds) vibrate/stretch/bend OR (as bonds) are polar NOT polar molecules; 'they' = bonds
6. (a) (i) Initiation $\mathrm{Br}_{2} \longrightarrow 2 \mathrm{Br} \cdot$

First propagation

$\mathrm{Br} \bullet+\mathrm{CHF}_{3} \longrightarrow{ }^{\longrightarrow} \mathrm{CF}_{3}+\mathrm{HBr}$

Second propagation

$\mathrm{Br}_{2}+\cdot{ }^{-} \mathrm{CF}_{3} \longrightarrow \mathrm{CBrF}_{3}+\mathrm{Br} \cdot$

Termination

$2 \cdot \mathrm{CF}_{3} \longrightarrow \mathrm{C}_{2} \mathrm{~F}_{6}$ OR $\mathrm{CF}_{3} \mathrm{CF}_{3}$
OR
$2 \mathrm{Br} \cdot \longrightarrow \mathrm{Br}_{2}$
OR
$\mathrm{Br} \cdot+\cdot{ }^{-} \mathrm{CF}_{3} \longrightarrow \mathrm{CBrF}_{3}$
Penalise absence of dot once only
Credit the dot anywhere on the radical
(ii) Ultra-violet / uv / sunlight

OR
$\mathrm{T}>100^{\circ} \mathrm{C}$ OR high temperature
(b) (i)

Displayed formula required with the radical dot on carbon
(ii) (The) $\underline{\mathrm{C}-\mathrm{Br}}$ (bond) breaks more readily / is weaker than (the) $\underline{\mathrm{C}-\mathrm{Cl}}$ (bond) (or converse)
OR
The $\underline{\mathrm{C}-\mathrm{Br}}$ bond enthalpy / bond strength is less than that for $\underline{\mathrm{C}-\mathrm{Cl}}$ (or converse)
Requires a comparison between the two bonds
Give credit for an answer that suggests that the UV frequency / energy may favour $\underline{C-B r}$ bond breakage rather than $\underline{C-C l}$ bond breakage
Ignore correct references either to size, polarity or electronegativity Credit correct answers that refer to, for example "the bond between carbon and bromine requires less energy to break than the bond between carbon and chlorine"
(iii) M1
$\mathrm{Br} \cdot+\mathrm{O}_{3} \longrightarrow \mathrm{BrO}+\mathrm{O}_{2}$

M2

$\mathrm{BrO}+\mathrm{O}_{3} \longrightarrow \mathrm{Br} \cdot+2 \mathrm{O}_{2}$
M1 and M2 could be in either order
Credit the dot anywhere on the radical
Penalise absence of dot once only
Penalise the use of multiples once only

M3 One of the following

They / it / the bromine (atom)

- does not appear in the overall equation
- is regenerated
- is unchanged at the end
- has not been used up
- provides an alternative route / mechanism
[10]

7. (a) (i) (Free-) radical substitution

Both underlined words are required
Penalise a correct answer if contradicted by an additional answer
(ii) Initiation
$\mathrm{F}_{2} \longrightarrow 2 \mathrm{~F}$.
Penalise absence of dot once only

First propagation

$$
\stackrel{\mathrm{F} \cdot}{+}+\underset{\text { Penalise }+ \text { or }- \text { charges every time }}{\mathrm{CH}_{3} \mathrm{~F}} \cdot \mathrm{CH}_{2} \mathrm{~F}+\mathrm{HF}
$$

Second propagation

$\mathrm{F}_{2}+\cdot \mathrm{CH}_{2} \mathrm{~F} \longrightarrow \mathrm{CH}_{2} \mathrm{~F}_{2}+\mathrm{F} \cdot$
Accept dot anywhere on $\mathrm{CH}_{2} \mathrm{~F}$ radical Mark independently

Termination (must make 1,2-difluoroethane)

$2 \cdot \mathrm{CH}_{2} \mathrm{~F} \longrightarrow \mathrm{CH}_{2} \mathrm{FCH}_{2} \mathrm{~F}$

Use of half-headed arrows must be correct to score, but if not correct then penalise once only in this clip
(iii) $\mathrm{CH}_{3} \mathrm{CH}_{3}+5 \mathrm{~F}_{2} \longrightarrow \mathrm{CF}_{3} \mathrm{CHF}_{2}+5 \mathrm{HF}$
$\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$
$\left(\mathrm{C}_{2} \mathrm{HF}_{5}\right)$
(b) 1,1,1,2-tetrachloro-2,2-difluoroethane

Accept phonetic spelling eg "fluro, cloro"
Penalise "flouro" and "floro", since QoL

OR

1,2,2,2-tetrachloro-1,1-difluoroethane
Ignore commas and hyphens
(c) (i) $2 \mathrm{O}_{3} \longrightarrow 3 \mathrm{O}_{2}$

ONLY this equation or a multiple Ignore NO over the arrow
Other species must be cancelled
(ii) $\mathrm{O}+\mathrm{NO}_{2} \longrightarrow \mathrm{NO}+\mathrm{O}_{2}$

ONLY this answer and NOT multiples
Ignore any radical dot on the O atom
[9]

