

A-Level Chemistry

Periodicity

Mark Scheme

Time available: 54 minutes Marks available: 49 marks

Mark schemes

1. (a) Aluminium / Al

Allow M2/M3 if a Group 3 element is given
(Outer) electron in (3)p orbital / sub-shell (level)
Not energy level
(3p) higher in energy / slightly more shielded (than 3s) / slightly further away (than 3s)
or
OR
Sulfur / S
Allow M2/M3 if a Group 6 element is given
(Outer) electrons in (3)p orbital begin to pair
Do not allow just p^{4} vs p^{3}

Repel
(b) $\mathrm{Na}^{2+}(\mathrm{g}) \rightarrow \mathrm{Na}^{3+}(\mathrm{g})+\mathrm{e}^{-}$

State symbols essential.
Allow
$\mathrm{Na}^{2+}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Na}^{3+}(\mathrm{g})+2 \mathrm{e}^{-}$
(c) M1 Phosphorus / P

Mark independently
M2 large jump in ionisation energy for the $6^{\text {th }}$ ionisation energy
Large jump after the $5 e^{-}$is removed / when the $6^{\text {th }} e^{-}$is removed
M3 This is when the electron is being removed from the $2^{\text {nd }}$ (principle) energy level / from a lower energy level / from a lower shell / from 2p / from an energy level that is closer to the nucleus
2. (a) Cross at 1580

Allow a cross drawn for Si that is between the values for $M g$ and $A I$
(b) M1 Na

M2 $\quad \mathrm{Na}^{+}(\mathrm{g}) \rightarrow \mathrm{Na}^{2+}(\mathrm{g})+\mathrm{e}^{-}$
M2 Allow $Q^{+}(g) \rightarrow Q^{2+}(g)+e^{-}$
State symbols essential
Allow correct equation consequential on their element
1
(c) The number of protons increases OR nuclear charge increases

Shielding is similar/same OR electrons are added to the same shell
Allow same number of shells
(d) Chlorine/Cl
(e) $4 \mathrm{P}+5 \mathrm{O}_{2} \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}$ OR $\mathrm{P}_{4}+5 \mathrm{O}_{2} \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}$

Allow multiples
Ignore state symbols
Do not allow equations with $\mathrm{P}_{2} \mathrm{O}_{5}$
3. (a) Repeating pattern/trends (of physical or chemical properties/reactions)

Allow named property
Penalise groups
(b) Bromine $/ \mathrm{Br}$

Not Br_{2}
Accept Kr or Krypton
(c) Potassium $/ \mathrm{K}$

If Na or Rb lose M1 but allow access to M2 and M3
If other incorrect elements 0/3

Smallest number of protons/smallest nuclear charge

Similar shielding / same number of shells (as other elements in period 4)
Allow same shielding
(d) Amphoteric
(e) $\mathrm{As}_{2} \mathrm{O}_{3}+6 \mathrm{Zn}+12 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{AsH}_{3}+6 \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+3 \mathrm{H}_{2} \mathrm{O}$

Accept multiples
4. (a) $\mathrm{Mg}\left({ }^{2+}\right)$ or Magnesium

$$
\mathrm{Na}^{+} \mathrm{CE}=0
$$

1
Because Mg^{2+} has more protons
AND
With the same shielding/screening/electron arrangement/number of electrons (or isoelectronic)

Allow larger/stronger nuclear charge
Ignore atomic radius
1
(b) $\mathrm{Na}(\mathrm{g}) \rightarrow \mathrm{Na}^{+}(\mathrm{g})+\mathrm{e}^{-}$

1 for correct species and gas phase
Allow e without charge
Allow $\mathrm{Na}(\mathrm{g})-\mathrm{e}^{-} \rightarrow \mathrm{Na}^{+}(\mathrm{g})$
$\mathrm{Na}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Na}^{+}(\mathrm{g})+2 \mathrm{e}^{-}$
1
(c) Mg between 600-800

S between 800-1040
If S not lower than P on graph then M1 only
If no plots on graph must state S below P to access M3 \& M4
1
e^{-}paired in (3)p orbital in S (owtte)
Allow (3)p subshell/sublevel provided pair mentioned

Paired e^{-}repel (so less energy needed to remove)
5. (a) Silicon / Si

If not silicon then $C E=0 / 3$
covalent (bonds)
M3 dependent on correct M2

Strong or many of the (covalent) bonds need to be broken / needs a lot of energy to break the (covalent) bonds Ignore hard to break
(b) Argon / Ar

If not argon then $C E=0 / 3$. But if Kr chosen, lose M1 and allow M2+M3

Large(st) number of protons / large(st) nuclear charge Ignore smallest atomic radius

Same amount of shielding / same number of shells / same number of energy levels Allow similar shielding
.
(c) Chlorine / Cl

Not Cl_{2}, Not CL, Not Cl^{2}
(d) (i)

Or any structure with 3 bonds and 2 lone pairs Ignore any angles shown

Or a structure with 2 bonds and 1 lone pair
(ii) Bent / v shape

Ignore non-linear, angular and triangular
Apply list principle
(iii) $\frac{1}{2} \mathrm{Cl}_{2}+\frac{3}{2} \mathrm{~F}_{2} \longrightarrow \mathrm{CIF}_{3}$
No multiples

Ignore state symbols
6. (a) Lithium / Li

Penalise obvious capital I (second letter).
(b) (i) Increase / gets bigger

Ignore exceptions to trend here even if wrong
1
(ii) Boron / B

If not Boron, $C E=0 / 3$
1
Electron removed from (2)p orbital /sub-shell / (2)p electrons removed If p orbital specified it must be $2 p$

Which is higher in energy (so more easily lost) / more shielded (so more easily lost) / further from nucleus
(c) $\mathrm{C} /$ carbon
(d) Below Li

The cross should be placed on the diagram, on the column for nitrogen, below the level of the cross printed on the diagram for Lithium.
(e) Macromolecular / giant molecular / giant atomic

Allow giant covalent (molecule) $=2$

Covalent bonds in the structure

Strong (covalent) bonds must be broken or overcome / (covalent) bonds need a lot of energy to break

Ignore weakening / loosening bonds
If ionic / metallic/molecular/ dipole dipole/ H bonds/ bonds between molecules, $C E=0 / 3$
Ignore van der Waals forces
Ignore hard to break

