

# **A-Level Chemistry**

## Periodicity

#### **Mark Scheme**

### Time available: 54 minutes Marks available: 49 marks

www.accesstuition.com

#### Mark schemes

| 1. | (a) | Aluminium / Al<br>Allow <b>M2/M3</b> if a Group 3 element is given                                                                                                                                                     |
|----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |     | 1<br>(Outer) electron in (3) <u>p</u> orbital / sub-shell (level)<br><i>Not energy level</i>                                                                                                                           |
|    |     | 1<br>(3p) higher in energy / slightly more shielded (than 3s) / slightly further                                                                                                                                       |
|    |     | away (than 3s)<br>1                                                                                                                                                                                                    |
|    |     | or<br>OR                                                                                                                                                                                                               |
|    |     | Sulfur / S<br>Allow M2/M3 if a Group 6 element is given<br>1                                                                                                                                                           |
|    |     | (Outer) electrons in (3)p orbital begin to <u>pair</u><br>Do not allow just $p^4$ vs $p^3$                                                                                                                             |
|    |     | 1<br>Repel                                                                                                                                                                                                             |
|    | (b) | $Na^{2+}(g) \rightarrow Na^{3+}(g) + e^{-}$ State symbols essential.<br>Allow $Na^{2+}(g) + e^{-} \rightarrow Na^{3+}(g) + 2 e^{-}$ 1                                                                                  |
|    | (c) | M1 Phosphorus / P<br>Mark independently                                                                                                                                                                                |
|    |     | <b>M2</b> large jump in ionisation energy for the $6^{th}$ ionisation energy<br>Large jump after the 5 e <sup>-</sup> is removed / when the $6^{th}$ e <sup>-</sup> is removed                                         |
|    |     | <b>M3</b> This is when the electron is being removed from the 2 <sup>nd</sup> (principle) energy level / from a lower energy level / from a lower shell / from 2p / from an energy level that is closer to the nucleus |
| 2. | (a) | 3<br>Cross at 1580<br>Allow a cross drawn for Si that is between the values for Mg and Al                                                                                                                              |
|    | (b) | M1 Na 1                                                                                                                                                                                                                |

www.accesstuition.com

[7]

|    |     | M2 $Na^+(g) \rightarrow Na^{2+}(g) + e^-$<br>M2 Allow $Q^+(g) \rightarrow Q^{2+}(g) + e^-$<br>State symbols essential<br>Allow correct equation consequential on their element                                             |   |     |
|----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
|    |     |                                                                                                                                                                                                                            | 1 |     |
|    | (c) | The number of protons increases OR nuclear charge increases                                                                                                                                                                | 1 |     |
|    |     | Shielding is similar/same OR electrons are added to the same shell<br>Allow same number of shells                                                                                                                          | 1 |     |
|    | (d) | Chlorine/Cl                                                                                                                                                                                                                | 1 |     |
|    | (e) | $\begin{array}{l} 4P + 5O_2 \rightarrow P_4O_{10} \; OR \; P_4 + 5O_2 \rightarrow P_4O_{10} \\ \\ Allow \; multiples \\ \\ Ignore \; state \; symbols \\ \\ Do \; not \; allow \; equations \; with \; P_2O_5 \end{array}$ | 1 | [7] |
| 3. | (a) | <u>Repeating</u> pattern/trends (of physical or chemical properties/reactions)<br>Allow named property<br>Penalise groups                                                                                                  | 1 | [,] |
|    | (b) | Bromine/Br<br>Not Br <sub>2</sub><br>Accept Kr or Krypton                                                                                                                                                                  | 1 |     |
|    | (c) | Potassium /K<br>If Na or Rb lose <b>M1</b> but allow access to <b>M2</b> and <b>M3</b><br>If other incorrect elements 0/3                                                                                                  | 1 |     |
|    |     | Smallest number of protons/smallest nuclear charge                                                                                                                                                                         | 1 |     |
|    |     | Similar shielding / same number of shells (as other elements in period 4)<br>Allow same shielding                                                                                                                          | 1 |     |
|    | (d) | Amphoteric                                                                                                                                                                                                                 | 1 |     |
|    | (e) | $As_2O_3 + 6 Zn + 12 HNO_3 \rightarrow 2 AsH_3 + 6 Zn(NO_3)_2 + 3 H_2O$<br>Accept multiples                                                                                                                                | 1 | [7] |

4.

5.

(a)

|     | AND<br>With the <u>sa</u><br>electrons (c                                                                                    | g <sup>2+</sup> has more protons<br><u>me</u> shielding/screening/electron arrangement/number of<br>or isoelectronic)<br><i>Allow larger/stronger nuclear charge</i><br><i>Ignore atomic radius</i> | 1 |     |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|--|--|
| (b) | $Na(g) \rightarrow Na$                                                                                                       | a⁺(g) + e <sup>−</sup><br>1 for correct species and gas phase                                                                                                                                       |   |     |  |  |
|     |                                                                                                                              | Allow e without charge                                                                                                                                                                              |   |     |  |  |
|     |                                                                                                                              | Allow $Na(g) - e^- \rightarrow Na^+(g)$                                                                                                                                                             |   |     |  |  |
|     |                                                                                                                              | $Na(q) + e^- \rightarrow Na^+(q) + 2e^-$                                                                                                                                                            |   |     |  |  |
|     |                                                                                                                              |                                                                                                                                                                                                     | 1 |     |  |  |
| (c) | Mg between 600-800                                                                                                           |                                                                                                                                                                                                     |   |     |  |  |
| (•) |                                                                                                                              |                                                                                                                                                                                                     | 1 |     |  |  |
|     | S between                                                                                                                    | 800-1040                                                                                                                                                                                            |   |     |  |  |
|     |                                                                                                                              | If S not lower than P on graph then M1 only                                                                                                                                                         |   |     |  |  |
|     |                                                                                                                              | If no plots on graph must state S below P to access M3 & M4                                                                                                                                         |   |     |  |  |
|     |                                                                                                                              |                                                                                                                                                                                                     | 1 |     |  |  |
|     | e⁻ paired in (3)p orbital in S (owtte)                                                                                       |                                                                                                                                                                                                     |   |     |  |  |
|     | •                                                                                                                            | Allow (3)p subshell/sublevel provided pair mentioned                                                                                                                                                |   |     |  |  |
|     |                                                                                                                              |                                                                                                                                                                                                     | 1 |     |  |  |
|     | Paired e <sup>-</sup> repel (so less energy needed to remove)                                                                |                                                                                                                                                                                                     |   |     |  |  |
|     | railed e Teper (so less energy fleeded to femove)                                                                            |                                                                                                                                                                                                     |   |     |  |  |
|     |                                                                                                                              |                                                                                                                                                                                                     |   | [7] |  |  |
| (a) | Silicon / Si                                                                                                                 |                                                                                                                                                                                                     |   |     |  |  |
|     |                                                                                                                              | If not silicon then $CE = 0/3$                                                                                                                                                                      |   |     |  |  |
|     |                                                                                                                              |                                                                                                                                                                                                     |   | 1   |  |  |
|     | <u>covalent</u> (bonds)                                                                                                      |                                                                                                                                                                                                     |   |     |  |  |
|     |                                                                                                                              | M3 dependent on correct M2                                                                                                                                                                          |   |     |  |  |
|     |                                                                                                                              |                                                                                                                                                                                                     |   | 1   |  |  |
|     | Strong or many of the (covalent) bonds need to be <u>broken</u> / needs a lot of energy to <u>break</u> the (covalent) bonds |                                                                                                                                                                                                     |   |     |  |  |
|     | Ignore hard to break                                                                                                         |                                                                                                                                                                                                     |   |     |  |  |
|     |                                                                                                                              |                                                                                                                                                                                                     |   | 1   |  |  |

(b) Argon / Ar

If not argon then 
$$CE = 0/3$$
. But if Kr chosen, lose M1 and allow M2+M3

Same amount of shielding / same number of shells / same number of energy levels Allow similar shielding

(c) Chlorine / Cl

Not  $Cl_2$ , Not CL, Not  $Cl^2$ 

(d) (i)



Or any structure with 3 bonds and 2 lone pairs Ignore any angles shown



Or a structure with 2 bonds and 1 lone pair

1

1

1

1

1

1

(ii) Bent / v shape

(iii)  $\frac{1}{2}$ Cl<sub>2</sub> +  $\frac{3}{2}$ F<sub>2</sub>  $\longrightarrow$  CIF<sub>3</sub>

No multiples

Ignore state symbols

Ignore non-linear, angular and triangular Apply list principle

1

[11]

1

(a) Lithium / Li

6.

Penalise obvious capital I (second letter).

- (b) (i) Increase / gets bigger Ignore exceptions to trend here even if wrong
  - (ii) Boron / B

If not Boron, CE = 0/3

Electron removed from (2)p orbital /sub-shell / (2)p electrons removed If p orbital specified it must be 2p

Which is higher in energy (so more easily lost) / more shielded (so more easily lost) / further from nucleus

- (c) C / carbon
- (d) Below Li



The cross should be placed on the diagram, on the column for nitrogen, below the level of the cross printed on the diagram for Lithium.

(e) Macromolecular / giant molecular / giant atomic Allow giant covalent (molecule) = 2

Covalent bonds in the structure

1

1

1

1

1

1

1

Ignore weakening / loosening bonds If ionic / metallic/molecular/ dipole dipole/ H bonds/ bonds between molecules, CE = 0/3 Ignore van der Waals forces Ignore hard to break

[10]