

A-Level Chemistry

Rate Equations

Mark Scheme

Time available: 49 minutes Marks available: 48 marks

1. (a) Stage 1: Calculates value of $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}\right]^{2}$:

M1 for the values ($0,0.0625 ; 0.25 ; 0.56$ and 1) in the table.
Ignore precision.

Stage 2: Plots graph:

M2 for the graph labels with units and appropriate scales and using sensible proportion of graph (plotted points must cover at least half the printed grid).
[$\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}\right]^{2}$ on x-axis (with units) $\mathrm{mol}^{2} \mathrm{dm}^{-6}$
Initial rate on y-axis (with units) $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{~s}^{-1}$
1
M3 for the plotting of 5 points.

Stage 3: Line of best fit:

M4 for the line of best fit.

(b) $2^{\text {nd }}$ order
(since) $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}\right]^{2}$ plotted against rate is straight line / directly proportional.
(c) (Role of CN^{-}) catalyst

Ignore nucleophile.
CN^{-}appears in the rate equation but is not in the reaction equation.
1
[8]
2. (a) Consider experiments 1 and 2: [B constant]
[A] increases $\times 3$: rate increases by 3^{2} therefore 2 nd order with respect to A

Consider experiments 2 and 3 :
$[A]$ increases $\times 2$: rate should increase $\times 2^{2}$ but only increases $\times 2$
Therefore, halving $[B]$ halves rate and so 1st order with respect to B

Rate equation: rate $=k[\mathrm{~A}]^{2}[\mathrm{~B}]$
(b) rate $=k[C]^{2}[D]$ therefore $k=$ rate $/[C]^{2}[D]$
$k=\frac{7.2 \times 10^{-4}}{\left(1.9 \times 10^{-2}\right)^{2} \times\left(3.5 \times 10^{-2}\right)}=57.0$

Allow consequential marking on incorrect transcription
$\mathrm{mol}^{-2} \mathrm{dm}^{+6} \mathrm{~s}^{-1}$
Any order
(c) rate $=57.0 \times\left(3.6 \times 10^{-2}\right)^{2} \times 5.4 \times 10^{-2}=3.99 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$

OR
Their $k \times\left(3.6 \times 10^{-2}\right)^{2} \times 5.4 \times 10^{-2}$
(d) Reaction occurs when molecules have $E \geq E_{\mathrm{a}}$

Doubling T by $10^{\circ} \mathrm{C}$ causes many more molecules to have this E

Whereas doubling [E] only doubles the number with this E
(e) $E_{\mathrm{a}}=R T(\ln A-\ln k) / 1000$

Mark is for rearrangement of equation and factor of 1000 used correctly to convert J into kJ
3. (a) Order wrt $\mathbf{D}=1$ OR first $O R[D]$ OR [D] $]^{1}$ Ignore working

1
Order wrt E $=2$ OR second OR $[E]^{2}$
(b) (At time zero/start) the concentrations are known
(c) M1 (Calculate) gradient (of tangent/curve/graph)

Allow description of gradient calculation:
Change in conc / time

M2 at $\mathrm{t}=0$ or at start of graph/curve
M2 scored only if M1 gained
Ignore the word initial
1
[5]
4. (a) lodine is not involved in (or before) the rate determining / slow(est) / limiting step (in the mechanism)

Ignore, iodine does not appear in the rate equation or iodine concentration does not affect the rate
$k=\left(\frac{8.64 \times 10^{-7}}{\left(5.82 \times 10^{-2}\right) \times\left(4.76 \times 10^{-1}\right)}\right)=3.1(2) \times 10^{-5}$
Mark for answer
1
$\mathrm{mol}^{-1} \mathrm{dm}^{+3} \mathrm{~s}^{-1}$
Mark units separately, i.e. only these units but can be in any order
1
(c) Rate $=k\left[\mathrm{H}^{+}\right]$

If wrong or missing $C E=0$
(Large excess of propanone) so $\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]$ is (effectively) constant
5.
(a) $\mathrm{k}=$ rate $/[\mathrm{A}]^{2}$ or $\frac{3.3 \times 10^{-5}}{\left(4.2 \times 10^{-3}\right)^{2}}$
$=1.87$ or 1.9
Answer scores 2
1.90 scores first mark only (incorrect rounding)
$\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$
Any order and independent of calculation
(b) Expt 2 rate $=1.167 \times 10^{-4}-1.2 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$

If answers in table are not those given here, check their value of k in part (a) or use of alternative k.

Expt $3[A]=9.7 \times 10^{-3}-9.8(1) \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
If their k is incorrect in part (a) mark this part consequentially e.g. if $k=7.9 \times 10^{-3}$ due to lack of squaring in (a)

Using alternative value for k
expt 24.9×10^{-7}
Expt 2 rate $=1.4(4) \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$
expt 31.5×10^{-1}
Expt $3[\mathrm{~A}]=8.85 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
(expt $26.24 \times 10^{-5} \times$ their k)
(expt $30.0134 / \sqrt{ } k$)
(c) Slow step or rds involves only A

OR
B does not appear in the slow step or the rds OR
B only appears after the slow step or the rds
Not B has no effect on the rate or B is not in the rate equation
Allow "it" for B
6. (a) (i) 2
(ii) 0
(b) (i) $K=\frac{6.64 \times 10^{-5}}{\left(4.55 \times 10^{-2}\right) \times\left(1.70 \times 10^{-2}\right)^{2}}$

Correct answer for k with or without working scores 2.
First mark is for insertion of numbers into a correctly rearranged rate equ , $k=e t c$.
$=5.05$ (range allowed 5.03-5.07)
AE (-1) for copying numbers wrongly or swapping two numbers.
1
$\mathrm{mol}^{-2} \mathrm{dm}^{+6} \mathrm{~s}^{-1}$
Mark units separately, ie only these units but can be in any order.
1
(ii) $8.3 \times 10^{-6}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$

Allow 0.83×10^{-5}.
Ignore units.
OR if not 8.3×10^{-6}, look at their k in part(i) and if not 5.05
Allow ecf for their (incorrect) $k \times\left(1.64 \times 10^{-6}\right)$
7. (a) (i) 2 or two or second or $[E]^{2}$
(ii) 1 or one or first or $[F]^{1}$ or [F]
(b) (i) $\quad k=\frac{8.6 \times 10^{-4}}{\left(3.8 \times 10^{-2}\right)^{2} \times\left(2.6 \times 10^{-2}\right)}$
mark is for insertion of numbers into a correctly rearranged rate equ , $k=e t c$.
AE (-1) for copying numbers wrongly or swapping two numbers.
$=22.9$ (Allow 22.9-24 after correct rounding)

$\underline{\mathrm{mol}^{-2} \mathrm{dm}^{+6} \mathrm{~s}^{\& 8722 ; 1}}$

Any order.
(ii) $\quad 6.8(2) \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{28722 ; 3} \mathrm{~s}^{-1}\right)$
$\boldsymbol{O R}$ if their k is wrong, award the mark consequentially
a quick check can be achieved by using
their answer $=2.9768 \times 10^{-4}$ Allow $2.9-3.1 \times 10^{-4}$ for the mark their k

Allow 6.8×10^{-3} to 6.9×10^{-3}
Ignore units.

