

A-Level Chemistry

Rate Equations

Mark Scheme

Time available: 49 minutes Marks available: 48 marks

www.accesstuition.com

Mark schemes

1.

(a) Stage 1: Calculates value of $[C_6H_5CHO]^2$:

M1 for the values (0, 0.0625; 0.25; 0.56 and 1) in the table. *Ignore precision.*

1

Stage 2: Plots graph:

M2 for the graph labels with units and appropriate scales and using sensible proportion of graph (plotted points must cover at least half the printed grid).

 $[C_6H_5CHOf$ on x-axis (with units) mof dm⁻⁶ Initial rate on y-axis (with units) mol dm⁻³ s⁻¹

1

M3 for the plotting of 5 points.

1

Stage 3: Line of best fit:

M4 for the line of best fit.

1

(b) 2nd order

1

(since) [C₆H₅CHO]² plotted against rate is straight line / directly proportional.

(c) (Role of CN⁻) catalyst

Ignore nucleophile.

CN⁻ appears in the rate equation but is not in the reaction equation.

[8]

2. (a) Consider experiments 1 and 2: [B constant]

[A] increases × 3: rate increases by 32 therefore 2nd order with respect to A

1

1

1

Consider experiments 2 and 3:

[A] increases \times 2: rate should increase \times 2² but only increases \times 2

Therefore, halving [B] halves rate and so 1st order with respect to B

1

Rate equation: rate = $k[A]^2[B]$

1

(b) rate = $k [C]^2[D]$ therefore $k = \text{rate } / [C]^2[D]$

1

$$k = \frac{7.2 \times 10^{-4}}{\left(1.9 \times 10^{-2}\right)^2 \times \left(3.5 \times 10^{-2}\right)} = 57.0$$

Allow consequential marking on incorrect transcription

1

$$mol^{-2} dm^{+6} s^{-1}$$

Any order

1

(c) rate = $57.0 \times (3.6 \times 10^{-2})^2 \times 5.4 \times 10^{-2} = 3.99 \times 10^{-3} \text{ (mol dm}^{-3} \text{ s}^{-1}\text{)}$

OR

Their $k \times (3.6 \times 10^{-2})^2 \times 5.4 \times 10^{-2}$

1

(d) Reaction occurs when molecules have $E \ge E_a$

1

Doubling T by 10 °C causes many more molecules to have this E

1

Whereas doubling [E] only doubles the number with this E

(e) E_a = RT(lnA - lnk) / 1000

Mark is for rearrangement of equation and factor of 1000 used correctly to convert J into kJ
E_a = 8.31 × 300 (23.97 - (-5.03)) / 1000 = 72.3 (kJ mol⁻¹)
(a) Order wrt **D** = 1 OR first OR [D] OR [D]¹

Ignore working
Order wrt **E** = 2 OR second OR [E]²

(b) (At time zero/start) the concentrations are known

3.

4.

(c)

M1 (Calculate) gradient (of tangent/curve/graph)

Allow description of gradient calculation:

Change in conc / time

M2 at t=0 or at start of graph/curve

M2 scored only if M1 gained

Ignore the word initial

(a) Iodine is not involved in (or before) the rate determining / slow(est) / limiting step (in the mechanism)

Ignore, iodine does not appear in the rate equation or iodine concentration does not affect the rate

(b) $k = (\frac{8.64 \times 10^{-7}}{(5.82 \times 10^{-2}) \times (4.76 \times 10^{-1})}) = 3.1(2) \times 10^{-5}$

Mark for answer

mol⁻¹ dm⁺³ s⁻¹

Mark units separately, i.e. only these units but can be in any order

(c) Rate = k [H⁺]

If wrong or missing CE = 0(Large excess of propanone) so [CH₃COCH₃] is (effectively) constant

[5]

1

1

1

1

1

1

1

1

1

1

1

[5]

[12]

5.

(a)
$$k = \text{rate} / [A]^2 \text{ or } \frac{3.3 \times 10^{-5}}{(4.2 \times 10^{-3})^2}$$

1

= 1.87 or 1.9

Answer scores 2

1.90 scores first mark only (incorrect rounding)

1

 $mol^{-1}dm^{3}s^{-1}$

Any order and independent of calculation

1

(b) Expt 2 rate = $1.167 \times 10^{-4} - 1.2 \times 10^{-4}$ (mol dm⁻³ s⁻¹)

If answers in table are not those given here, check their value of k in part (a) or use of alternative k.

1

Expt 3 [A] = $9.7 \times 10^{-3} - 9.8(1) \times 10^{-3}$ (mol dm⁻³)

If their k is incorrect in part (a) mark this part consequentially e.g. if $k = 7.9 \times 10^{-3}$ due to lack of squaring in (a)

Using alternative value for k

Expt 2 rate = $1.4(4) \times 10^{-4}$ (mol dm⁻³ s⁻¹) expt 3 1.5 ×10⁻¹

Expt 3 [A] = 8.85×10^{-3} (mol dm⁻³) (expt 2 $6.24 \times 10^{-5} \times$ their k) (expt 3 $0.0134 / \sqrt{k}$)

1

(c) Slow step or rds involves only A

OR

B does not appear in the slow step or the rds

OR

B only appears after the slow step or the rds

Not B has no effect on the rate or B is not in the rate equation Allow "it" for B

[6]

6. (a) (i) 2

(ii) O

1

(b) (i)
$$K = \frac{6.64 \times 10^{-5}}{(4.55 \times 10^{-2}) \times (1.70 \times 10^{-2})^2}$$

Correct answer for k with or without working scores 2.

First mark is for insertion of numbers into a correctly rearranged rate equ , $k =$ etc.

= 5.05 (range allowed 5.03-5.07)

 $AE(-1)$ for copying numbers wrongly or swapping two numbers.

 $\frac{\text{mol}^{-2} \, \text{dm}^{+6} \, \text{s}^{-1}}{Mark \, \text{units separately, ie only these units but can be in any order.}}$

(ii) 8.3×10^{-6} (mol dm⁻³ s⁻¹)

 $Allow \, 0.83 \times 10^{-5}$.

 $Ignore \, \text{units.}}$

OR if not 8.3×10^{-6} , look at their k in part(i) and if not 5.05

Allow ecf for their (incorrect) $k \times (1.64 \times 10^{-6})$

7. (a) (i) 2 or two or second or [E]²

(ii) 1 or one or first or [F]¹ or [F]

(b) (i) $k = \frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-2})^2 \times (2.6 \times 10^{-2})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-2})^2 \times (2.6 \times 10^{-2})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-2})^2 \times (2.6 \times 10^{-2})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-2})^2 \times (2.6 \times 10^{-2})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-2})^2 \times (2.6 \times 10^{-2})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-2})^2 \times (2.6 \times 10^{-2})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-2})^2 \times (2.6 \times 10^{-2})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-2})^2 \times (2.6 \times 10^{-2})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-2})^2 \times (2.6 \times 10^{-2})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-2})^2 \times (2.6 \times 10^{-2})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-2})^2 \times (2.6 \times 10^{-2})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-2})^2 \times (2.6 \times 10^{-2})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-2})^2 \times (2.6 \times 10^{-2})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-2})^2 \times (2.6 \times 10^{-2})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-2})^2 \times (2.6 \times 10^{-2})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-4})^2 \times (2.6 \times 10^{-2})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-4})^2 \times (2.6 \times 10^{-2})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-4})^2 \times (2.6 \times 10^{-2})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-4})^2 \times (2.6 \times 10^{-2})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-4})^2 \times (2.6 \times 10^{-4})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-4})^2 \times (3.6 \times 10^{-4})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-4})^2 \times (3.6 \times 10^{-4})}$
 $\frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-4})^2 \times (3.6$

```
(ii) 6.8(2) \times 10^{-3} (mol dm<sup>&8722;3</sup>s<sup>-1</sup>)

OR if their k is wrong, award the mark consequentially a quick check can be achieved by using their answer = 2.9768 \times 10^{-4} Allow 2.9 - 3.1 \times 10^{-4} for the mark their k

Allow 6.8 \times 10^{-3} to 6.9 \times 10^{-3}
Ignore units.
```

[6]