

A-Level Chemistry

Rate Equations (Multiple Choice)

Question Paper

Time available: 14 minutes Marks available: 12 marks

1. The rate expression for the reaction between \mathbf{X} and \mathbf{Y} is

$$
\text { rate }=k[\mathbf{X}]^{2}[\mathbf{Y}]
$$

Which statement is correct?

A The rate constant has units $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$

B The rate of the reaction is halved if the concentration of \mathbf{X} is halved and the concentration of \mathbf{Y} is doubled.

C The rate increases by a factor of 16 if the concentration of \mathbf{X} is tripled and the concentration of \mathbf{Y} is doubled.

D The rate constant is independent of temperature.
(Total 1 mark)
2. What are the units of the rate constant for a third order reaction?

A $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$

B $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$

C $\mathrm{mol}^{2} \mathrm{dm}^{-6} \mathrm{~s}^{-1}$

D $\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$

(Total 1 mark)
3. What is the pH of $0.015 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid?
A -1.82

B -1.52

C $\quad 1.52$

D 1.82
4. The results of an investigation of the reaction between P and Q are shown in this table.

Experiment	Initial [P] $/ \mathbf{m o l ~ d m}^{\mathbf{- 3}}$	Initial [Q] $/ \mathbf{~ m o l ~ d m}^{\mathbf{- 3}}$	Initial rate $/ \mathbf{m o l ~ d m}^{\mathbf{- 3}} \mathbf{s}^{\mathbf{- 1}}$
1	0.200	0.500	0.400
2	0.600	To be calculated	0.800

The rate equation is: \quad rate $=k[\mathbf{P}][\mathbf{Q}]^{2}$
What is the initial concentration of \mathbf{Q} in experiment 2 ?

A 0.167 \square
B 0.333

C 0.408 \square

D 0.612

(Total 1 mark)
5. Solutions of two compounds, \mathbf{W} and \mathbf{X}, react together in the presence of a soluble catalyst, \mathbf{Y}, as shown in the equation

$$
2 \mathbf{W}+\mathbf{X} \rightarrow \mathbf{Z}
$$

When the concentrations of \mathbf{W}, \mathbf{X} and \mathbf{Y} are all doubled, the rate of reaction increases by a factor of four.

Which is a possible rate equation for this reaction?

A rate $=k[\mathbf{W}]^{2}[\mathbf{X}]$ \square

B rate $=k[\mathbf{W}]^{2}[\mathbf{Y}]$ \square
C rate $=k[\mathbf{X}][\mathbf{Y}]$

D rate $=k[\mathbf{X}][\mathbf{Z}]$ \bigcirc
(Total 1 mark)
6. A series of experiments was carried out to find the order of reaction with respect to reactant \mathbf{X}. In these experiments, only the concentration of \mathbf{X} was changed.

Which graph would show that the reaction is second-order with respect to \mathbf{X} ?

A O
B $\quad 0$
C 0
D 0

(Total 1 mark)

7. The rate equation for the acid-catalysed reaction between iodine and propanone is:

$$
\text { rate }=k\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right]
$$

The rate of reaction was measured for a mixture of iodine, propanone and sulfuric acid at $\mathrm{pH}=0.70$

In a second mixture the concentration of the sulfuric acid was different but the concentrations of iodine and propanone were unchanged. The new rate of reaction was a quarter of the original rate.

What was the pH of the second mixture?

A $\quad 1.00$ \square

B $\quad 1.30$
0

C $\quad 1.40$
0

D $\quad 2.80$
0
8. A rate investigation was carried out on a reaction involving three reactants, \mathbf{X}, \mathbf{Y} and \mathbf{Z}. The concentrations of the reactants were varied and the relative rate for each mixture determined.

Experiment	$[\mathbf{X}] / \mathrm{mol} \mathrm{dm}^{-3}$	$[\mathbf{Y}] / \mathrm{mol} \mathrm{dm}^{-3}$	$[\mathbf{Z}] / \mathrm{mol} \mathrm{dm}^{-3}$	Relative rate
1	1×10^{-3}	1×10^{-3}	2×10^{-3}	1
2	2×10^{-3}	2×10^{-3}	2×10^{-3}	4
3	5×10^{-4}	2×10^{-3}	4×10^{-3}	0.5

The reaction is zero order with respect to \mathbf{Y}.
What is the overall order of reaction?
A 0 \square
B 1 \square
C 2

D 3
\bigcirc
(Total 1 mark)
9. The rate equation for the hydrogenation of ethene

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})
$$

is Rate $=k\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]\left[\mathrm{H}_{2}\right]$
At a fixed temperature, the reaction mixture is compressed to triple the original pressure.
What is the factor by which the rate of reaction changes?

A $6 \quad 0$
B $9 \quad \circ$
C $12 \quad 0$
D $27 \quad 0$
10. This question is about the reaction between propanone and an excess of ethane-1,2-diol, the equation for which is given below.

In a typical procedure, a mixture of 1.00 g of propanone, 5.00 g of ethane-1,2-diol and 0.100 g of benzenesulphonic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}$, is heated under reflux in an inert solvent. Benzenesulphonic acid is a strong acid.

When the concentration of benzenesulphonic acid is doubled, the rate of the reaction doubles. It can be deduced that

A the reaction is first order overall.
B the reaction is third order overall.
C the reaction is acid-catalysed.
D units for the rate constant, k, are $\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$.
(Total 1 mark)
11. The equation and rate law for the reaction of substance P with substance Q are given below.

$$
\begin{aligned}
2 \mathrm{P}+\mathrm{Q} & \rightarrow \mathrm{R}+\mathrm{S} \\
\text { rate } & =k[\mathrm{P}]^{2}\left[\mathrm{H}^{+}\right]
\end{aligned}
$$

Under which one of the following conditions, all at the same temperature, would the rate of reaction be slowest?
$[P] / \mathrm{mol} \mathrm{dm}^{-3} \quad \mathrm{pH}$
A
0.1
0

B
1
2
$\begin{array}{lll}\text { C } & 3\end{array}$
$\begin{array}{lll}\text { D } & 10 & 4\end{array}$
(Total 1 mark)
12. Rate $=k[A]^{2}[B]$

Correct units for the rate constant in the rate equation above are
A $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
B $\mathrm{mol}^{-1} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
C $\mathrm{mol}^{2} \mathrm{dm}^{-6} \mathrm{~s}^{-1}$
D $\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$

