

A-Level Chemistry

Reactions of Metal Aqua Ions

Mark Scheme

Time available: 78 minutes Marks available: 70 marks

www.accesstuition.com

Mark schemes

(a)

1.

This questi Instruction	This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.	
Level 3 5-6 marks	All stages are covered and the description of each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 and stage 3.	
Level 2 3-4 marks	All stages are covered but the description of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows progression from stage 1 to stage 2 and/or stage 3.	
Level 1 1-2 marks	Two stages are covered but the description of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes isolated statements and these are presented in a logical order.	
Level 0	0 marks Insufficient correct chemistry to gain a mark.	

Stage 1

1a Heterogeneous means in a different phase/state from reactants 1b Catalyst speeds up reaction and is left unchanged **OR** lowers the activation energy for the reaction

Stage 2

2a Hydrogen and nitrogen/reactants adsorb onto the surface/ active sites of the iron

2b Bonds weaken/reaction takes place

2c Products desorb/leave from the surface (of the iron)

Stage 3

3a Large surface area (of iron) by using powder or small pellets or support medium/mesh

3b Catalyst poisoned / sulfur poisons or binds to the catalyst

3c Active sites blocked

Ignore references to temperature and pressure

6

(b) Two negative ions repel

		1
	So activation energy is high	1
	2 Fe ²⁺ + S ₂ O ₈ ²⁻ \rightarrow 2 SO ₄ ²⁻ + 2 Fe ³⁺	1
	$2 \operatorname{Fe}^{3+} + 2 \operatorname{I}^{-} \rightarrow 2 \operatorname{Fe}^{2+} + \operatorname{I}_{2}$	
	Ignore any state symbols given	
	Allow equations in either order	
	Anow equations in either order	1
(c)	(Zn ions) have only one oxidation state Or	
	Zn ²⁺ is the only ion	
	Allow doesn't have variable oxidation state	
	Allow cannot be oxidised to Zn^{3+}	
	Ignore has a full d shell	1
(d)	M1 Amount of Fe = 0.998 ÷ 55.8 = 0.0179 mol	1
	M2 Amount of HCI = 0.0300 mol	1
	M3 HCl is the limiting reagent	1
	M4 Amount of H ₂ produced = 0.0150 mol $M4 = M2 \div 2$	
		1
	M5 T = 303 K P = 100 000 Pa	1
	$M6^{V} \begin{bmatrix} = \underline{0.0150 \times 8.31 \times 303} \\ 100\ 000 \end{bmatrix} = 3.78 \times 10^{-4} \text{ (m}^{3})$ $M6^{V} \begin{bmatrix} = \underline{M4 \times 8.31 \times 303} \\ 100\ 000 \end{bmatrix} \text{ (m}^{3})$	1
(e)	FeCO ₃ or iron(II) carbonate	1
	Groop	-
		1

www.accesstuition.com

(f) $Fe(H_2O)_3(OH)_3$

2.

		Ignore square brackets if added	1
	brow	'n	1
			1
	2 [Fe	$(H_2O)_6]^{3+} + 3 CO_3^{2-} \rightarrow 2 Fe(H_2O)_3(OH)_3 + 3 H_2O + 3 CO_2$ Accept multiples	
			1
(g)	M1 F grea	^{Fe³⁺ is smaller (than Fe²⁺) OR Fe³⁺ has a greater charge OR Fe³⁺ has a ter charge density OR Fe³⁺ has a greater charge to size ratio}	
		Penalise $Fe(H_2O)_6^{3+}$ ions once in M1 or M2	1
	M2 F	^{Fe³⁺ ions are more polarising OR Fe³⁺ ions polarise water molecules more}	1
	M3 8 OR v	So more O-H bonds (in the water ligands) break OR more H ⁺ ions released weaken O-H bonds in ligands more (in the Fe ³⁺ solution)	
		Do not allow Fe ³⁺ releases 3H ⁺ ions	
			1 [25]
(a)	M 1	$\mathbf{B} = AI(H_2O)_3(OH)_3$	
		Ignore []	1
	M2	bubbles/effervescence	
		M2 Do not allow gas evolved	1
	М3	2 $[AI(H_2O)_6]^{3+}$ + $3CO_3^{2-} \rightarrow 2 AI(H_2O)_3(OH)_3 + 3H_2O + 3CO_2$	
		M3 Ignore absence of square brackets around AI complex	
		M3 Allow correct balanced equations with Na_2CO_3	
			1

(b)	M1	$C = [AI(OH)_4]^- OR [AI(H_2O)_2(OH)_4]^- OR [AI(OH)_6]^{3-}$	1	
	M2	Excess NaOH		
		M2 Allow excess OH ⁻	1	
	М3	$[AI(H_2O)_6]^{3+} + 4 \text{ OH}^- \rightarrow [AI(OH)_4]^- + 6 \text{ H}_2O$		
	OR			
		$[AI(H_2O)_6]^{3+} + 4 \text{ OH}^- \rightarrow [AI(H_2O)_2(OH)_4]^- + 4 \text{ H}_2O$		
	OR			
		$[AI(H_2O)_6]^{3+} + 6 \text{ OH}^- \rightarrow [AI(OH)_6]^{3-} + 6 \text{ H}_2O$		
		M3 Allow equations to form $Al(H_2O)(OH)_5^{2-}$		
		M3 Allow correct balanced equations with NaOH	1	
(c)	[AI(E	DTA)] ⁻		
		Do not penalise absence of square brackets	1	
(d)	M1	$[AI(H_2O)_6]^{3+} + H_2O \rightleftharpoons [AI(H_2O)_5(OH)]^{2+} + H_3O^+ OR$ $[AI(H_2O)_6]^{3+} \rightleftharpoons [AI(H_2O)_5(OH)]^{2+} + H^+$		
		Accept other equations	1	
	M2	<u>Al³⁺ has a small size and high charge OR has a high charge density</u>	1	
	М3	Weakens the OH bond (in water) releasing H ⁺ ions		
		M2 Allow the aluminium ion has a small size <u>and</u> high charge OR has a high charge density		
			1 [1	01
(a)	[Fe(C	DH) ₃ (H ₂ O) ₃]	•	•
			1	
	Brow	n M2: Allow red-brown		
			1	
	2[Fe	$(H_2O)_6]^{3+} + 3CO_3^{2-} \rightarrow 2[Fe(OH)_3(H_2O)_3] + 3CO_2 + 3H_2O_3$		
		M3: Allow correct equations with Na_2CO_3		
		INS. Ignore State symbols	1	

3.

(b) $[FeCl_4]^-$

$[Fe(H_2O)_6]^{3+} + 4 \text{ Cl}^- \rightarrow [FeCl_4]^- + 6 \text{ H}_2O$
M2: Allow correct equations with HC

- (c) (XS) Zn (in acid or CHI or H₂SO₄) Allow Kl/potassium iodide
- (d) [Fe(OH)₂(H₂O)₄]

green

(e)

This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.		
Level 3 5-6 marks	All stages are covered and the description of each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 and stage 3	
	Answer is illustrated using diagrams of at least 2 specific examples of pairs of cobalt or platinum complex isomers.	
Level 2 3-4 marks	All stages are covered but the description of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows progression from stage 1 to stage 2 and/or stage 3. Answer is illustrated using diagrams of at least 1 specific example	
	of a pair of cobalt or platinum complex isomers.	
Level 1 1-2 marks	Two stages are covered but the description of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes isolated statements and these are presented in a logical order.	
	Answer is illustrated using at least 1 appropriate diagram or formula.	
0 marks	Insufficient correct chemistry to gain a mark.	

1

1

1

1

1

Indicative Chemistry content

Stage 1: shapes of complexes

1a octahedral or 6 co-ordinate diagram

1b tetrahedral or square planar or 4 co-ordinate diagram

Stage 2: cis/ trans isomerism (or E-Z or geometric)

2a cis/trans isomerism in either square planar and/or octahedral complexes

2b Diagrams showing cis and trans isomerism in a square planar complex

2c Diagrams showing cis <u>and</u> trans isomerism in both isomers of octahdedral complexes eg draw cis <u>and</u> trans $M(H_2O)_4(OH)_2$ or $[M(NH_3)_4(H_2O)_2]^{2+}$

Stage 3: optical isomerism

3a optical isomerism / non superimposable mirror images in octahedral complexes

3b occurs with a specific bidentate ligands eg.C₂O₄²⁻ or NH₂CH₂CH₂NH₂

3c draw both optical isomers of eg [M(NH₂CH₂CH₂NH₂)₃]²⁺

4. (a)
$$AICI_3 + 6H_2O \rightarrow [AI(H_2O)_6]^{3+} + 3CI^-$$

 $Allow$
 $AICI_3 + 6H_2O \rightarrow AI(H_2O)_5(OH)_2^+ + H^+ + 3CI^-$
 $Or equation to form Al(H_2O)_4(OH)_2^+$
1
(b) $[AI(H_2O)_6]^{3+} + H_2O \rightarrow [AI(H_2O)_5(OH)]^{2+} + H_3O^+$
 $allow equations to form $[AI(H_2O)_4(OH)_2]^+$
1
(c) white ppt/solid
 $M1$ and $M2$ in either order
1
effervescence/bubbles/fizzing
1
 $2[AI(H_2O)_6]^{3+} + 3CO_3^{2-} \rightarrow 2[AI(H_2O)_3(OH)_3] + 3CO_2 + 3H_2O$
 $accept multiples$
only allow spectator ions in a balanced equation
1$

6

[14]

(d) White ppt/solid

 $[AI(H_2O)_6]^{3+} + 3OH^- \rightarrow \underline{[AI(H_2O)_3(OH)_3]} + 3H_2O$ only allow spectator ions in a balanced equation

Colourless solution forms / ppt or solid dissolves

 $[AI(H_2O)_3(OH)_3] + OH^- \rightarrow [AI(H_2O)2(OH)4] - + H_2O$

OR

$$\begin{split} [AI(H_2O)_3(OH)_3] + OH^- &\rightarrow [AI(OH)_4]^- + 3H_2O \\ only allow 6 or 4 co-ordination \\ Allow [Al(OH)_6]^{3-} in a balanced equation \end{split}$$

[9]

1

1

2

1

1

1

1

(a) Reaction 1

5.

General principles in marking this question

Square brackets are not essential Penalise charges on individual ligands rather than on the whole complex Reagent and species can be extracted from the equation Ignore conditions such as dilute, concentrated, excess Reagent must be a compound NOT just an ion Equations must start from $[Cu(H_2O)_6]^{2+}$ except in part (b) Mark reagent, species and equation independently

ammonia (NH₃) (solution) / NaOH

 $[Cu(H_2O)_6]^{2+} + 2NH_3 \rightarrow [Cu(H_2O)_4(OH)_2] + 2NH_4^+ /$

 $[Cu(H_2O)_6]^{2+} + 2OH^- \rightarrow [Cu(H_2O)_4(OH)_2] + 2H_2O$ *Do not allow OH⁻ for reagent Product 1, balanced equation 1 Allow either equation for ammonia*

(b) Reaction 2

Ammonia (conc / xs)

$$\begin{split} [\mathsf{Cu}(\mathsf{H}_2\mathsf{O})_4(\mathsf{OH})_2] + 4\mathsf{NH}_3 & \rightarrow [\mathsf{Cu}(\mathsf{H}_2\mathsf{O})_2(\mathsf{NH}_3)_4]^{2+} + 2\mathsf{H}_2\mathsf{O} + 2\mathsf{OH}^-\\ \\ Product \ 1, \ balanced \ equation \ 1\\ \\ Note \ that \ the \ equation \ must \ start \ from \ the \ hydroxide\\ \\ [\mathsf{Cu}(\mathsf{H}_2\mathsf{O})_4(\mathsf{OH})_2] \end{split}$$

2

(c) Reaction 3

Na₂CO₃ / any identified soluble carbonate / NaHCO₃ Do not allow NaCO₃ or any insoluble carbonate but mark on

1

2

1

2

 $[Cu(H_2O)_6]^{2+} + CO_3^{2-} \rightarrow CuCO_3 + 6H_2O$

 $OR \ [Cu(H_2O)_6]^{2+} + Na_2CO_3 \rightarrow CuCO_3 + 6H_2O + 2Na^+$

 $\mathsf{OR}\ 2[\mathsf{Cu}(\mathsf{H}_2\mathsf{O})_6]^{2+} + 2\mathsf{CO}_3^{2-} \to \mathsf{Cu}(\mathsf{OH})_2.\mathsf{Cu}\mathsf{CO}_3 + 11\mathsf{H}_2\mathsf{O} + \mathsf{CO}_2$

OR with NaHCO₃

$$[Cu(H_2O)_6]^{2+} + HCO_3^- \rightarrow CuCO_3 + 6H_2O + H^+$$

Product 1, balanced equation 1

(d) Reaction 4

HCI (conc / xs) / NaCl Allow any identified soluble chloride

$$[Cu(H_2O)_6]^{2+} + 4Cl^- \rightarrow [CuCl_4]^{2-} + 6H_2O$$
Product 1, balanced equation 1

[12]