

A-Level Chemistry

Reactions of Metal Aqua Ions

Mark Scheme

Time available: 78 minutes Marks available: 70 marks

1. (a)

This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.	
Level 3 5-6 marks	All stages are covered and the description of each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 and stage 3.
Level 2 3-4 marks	All stages are covered but the description of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows progression from stage 1 to stage 2 and/or stage 3.
1-2 marks	Two stages are covered but the description of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes isolated statements and these are presented in a logical order.
Level 0	0 marks Insufficient correct chemistry to gain a mark.

Stage 1

1a Heterogeneous means in a different phase/state from reactants
1b Catalyst speeds up reaction and is left unchanged OR lowers the activation energy for the reaction

Stage 2
2a Hydrogen and nitrogen/reactants adsorb onto the surface/ active sites of the iron
2b Bonds weaken/reaction takes place
2c Products desorb/leave from the surface (of the iron)

Stage 3

3a Large surface area (of iron) by using powder or small pellets or support medium/mesh
3b Catalyst poisoned / sulfur poisons or binds to the catalyst
3c Active sites blocked
Ignore references to temperature and pressure
(b) Two negative ions repel

So activation energy is high
1
$2 \mathrm{Fe}^{2+}+\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}+2 \mathrm{Fe}^{3+}$
$2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2}$
Ignore any state symbols given
Allow multiples for both equations
Allow equations in either order
(c) (Zn ions) have only one oxidation state Or Zn^{2+} is the only ion

Allow doesn't have variable oxidation state
Allow cannot be oxidised to Zn^{3+} Ignore has a full d shell
(d) M 1 Amount of $\mathrm{Fe}=0.998 \div 55.8=0.0179 \mathrm{~mol}$

M2 Amount of $\mathrm{HCl}=0.0300 \mathrm{~mol}$

M 3 HCl is the limiting reagent

M4 Amount of H_{2} produced $=0.0150 \mathrm{~mol}$

$$
M 4=M 2 \div 2
$$

$\mathrm{M} 5 \mathrm{~T}=303 \mathrm{KP}=100000 \mathrm{~Pa}$

$$
\begin{gathered}
\mathrm{M}^{\mathrm{V}} \mathrm{~V}\left(=\frac{0.0150 \times 8.31 \times 303}{100000}\right)=3.78 \times 10^{-4}\left(\mathrm{~m}^{3}\right) \\
M 6 \mathrm{~V}\left[=\frac{\mathrm{M} 4 \times 8.31 \times 303}{100000}\right)\left(\mathrm{m}^{3}\right)
\end{gathered}
$$

(e) FeCO_{3} or iron(II) carbonate

Green
Allow white
(f) $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}$ Ignore square brackets if added
brown
$2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{CO}_{3}^{2-} \rightarrow 2 \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2}$
Accept multiples
(g) $\mathrm{M}_{1} \mathrm{Fe}^{3+}$ is smaller (than Fe^{2+}) $\mathbf{O R F e}{ }^{3+}$ has a greater charge $\mathbf{O R ~ F e}{ }^{3+}$ has a greater charge density $\mathbf{O R ~ F e}{ }^{3+}$ has a greater charge to size ratio

Penalise $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$ ions once in M1 or M2
$\mathrm{M} 2 \mathrm{Fe}^{3+}$ ions are more polarising $\mathbf{O R} \mathrm{Fe}^{3+}$ ions polarise water molecules more

M3 So more O-H bonds (in the water ligands) break OR more H^{+}ions released OR weaken $\mathrm{O}-\mathrm{H}$ bonds in ligands more (in the Fe^{3+} solution)

Do not allow Fe^{3+} releases $3 \mathrm{H}^{+}$ions
2. (a) M1 B= $\begin{gathered}\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3} \\ \text { lgnore [] }\end{gathered}$ Ignore []

M2 bubbles/effervescence M2 Do not allow gas evolved

M3 $2\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{CO}_{3}{ }^{2-} \rightarrow 2 \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2}$ M3 Ignore absence of square brackets around Al complex M3 Allow correct balanced equations with $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(b) M1 $\quad \mathbf{C}=\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-} \mathrm{OR}\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}\right]^{-} \mathrm{OR}\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-}$

M2 Excess NaOH
M2 Allow excess OH^{-}

M3 $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+4 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}+6 \mathrm{H}_{2} \mathrm{O}$
OR
$\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+4 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}\right]^{-}+4 \mathrm{H}_{2} \mathrm{O}$
OR
$\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+6 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-}+6 \mathrm{H}_{2} \mathrm{O}$
M3 Allow equations to form $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{OH})_{5}{ }^{2-}$
M3 Allow correct balanced equations with NaOH
(c) $\quad[\mathrm{Al}(\mathrm{EDTA})]^{-}$

Do not penalise absence of square brackets
(d) M1 $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}+\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{OR}$
$\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \rightleftharpoons\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}+\mathrm{H}^{+}$
Accept other equations

M2 $\underline{\mathrm{Al}^{3+}}$ has a small size and high charge OR has a high charge density

M3 Weakens the OH bond (in water) releasing H^{+}ions
M2 Allow the aluminium ion has a small size and high charge $O R$ has a high charge density
3. (a) $\left[\mathrm{Fe}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$

Brown
M2: Allow red-brown
$2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{CO}_{3}{ }^{2-} \rightarrow 2\left[\mathrm{Fe}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
M3: Allow correct equations with $\mathrm{Na}_{2} \mathrm{CO}_{3}$
M3: Ignore State symbols
(b) $\left[\mathrm{FeCl}_{4}\right]^{-}$
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{FeCl}_{4}\right]^{-}+6 \mathrm{H}_{2} \mathrm{O}$
M2: Allow correct equations with HCl
(c) (XS) Zn (in acid or CHI or $\mathrm{H}_{2} \mathrm{SO}_{4}$)

Allow Kl/potassium iodide
(d) $\left[\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
green
(e)

This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.	
Level 3 5-6 marks	All stages are covered and the description of each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 and stage 3 Answer is illustrated using diagrams of at least 2 specific examples of pairs of cobalt or platinum complex isomers.
Level 2 3-4 marks	All stages are covered but the description of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows progression from stage 1 to stage 2 and/or stage 3. Answer is illustrated using diagrams of at least 1 specific example of a pair of cobalt or platinum complex isomers.
Level 1 1-2 marks	Two stages are covered but the description of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes isolated statements and these are presented in a logical order. Answer is illustrated using at least 1 appropriate diagram or formula.
0 marks	Insufficient correct chemistry to gain a mark.

Indicative Chemistry content

Stage 1: shapes of complexes

1a octahedral or 6 co-ordinate diagram
1 b tetrahedral or square planar or 4 co-ordinate diagram
Stage 2: cis/ trans isomerism (or E-Z or geometric)
2a cis/trans isomerism in either square planar and/or octahedral complexes
$\mathrm{2b}$ Diagrams showing cis and trans isomerism in a square planar complex
2c Diagrams showing cis and trans isomerism in both isomers of octahdedral complexes eg draw cis and trans $\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}$ or $\left[\mathrm{M}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$

Stage 3: optical isomerism

3a optical isomerism / non superimposable mirror images in octahedral complexes
$3 b$ occurs with a specific bidentate ligands eg. $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ or $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
$3 c$ draw both optical isomers of eg $\left[\mathrm{M}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]^{2+}$
(a) $\mathrm{AlCl}_{3}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{Cl}^{-}$ Allow
$\mathrm{AlCl}_{3}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})_{2}{ }^{+}+\mathrm{H}^{+}+3 \mathrm{Cl}^{-}$
Or equation to form $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}{ }^{+}$
(b) $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}+\mathrm{H}_{3} \mathrm{O}^{+}$ allow equations to form $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]^{+}$
(c) white ppt/solid

M1 and M2 in either order
effervescence/bubbles/fizzing

$$
\begin{aligned}
& 2\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{CO}_{3}^{2-} \rightarrow 2\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \\
& \text { accept multiples } \\
& \text { only allow spectator ions in a balanced equation }
\end{aligned}
$$

(d) White ppt/solid
$\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]+3 \mathrm{H}_{2} \mathrm{O}$
only allow spectator ions in a balanced equation

Colourless solution forms / ppt or solid dissolves
$\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]+\mathrm{OH}^{-} \rightarrow\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right) 2(\mathrm{OH}) 4\right]-+\mathrm{H}_{2} \mathrm{O}$
OR
$\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]+\mathrm{OH}^{-} \rightarrow\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}+3 \mathrm{H}_{2} \mathrm{O}$ only allow 6 or 4 co-ordination Allow $\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-}$ in a balanced equation

1
5. (a) Reaction 1

General principles in marking this question
Square brackets are not essential
Penalise charges on individual ligands rather than on the whole complex
Reagent and species can be extracted from the equation Ignore conditions such as dilute, concentrated, excess
Reagent must be a compound NOT just an ion
Equations must start from $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ except in part (b)
Mark reagent, species and equation independently
ammonia $\left(\mathrm{NH}_{3}\right)$ (solution) / NaOH
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+2 \mathrm{NH}_{4}+/$
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+2 \mathrm{H}_{2} \mathrm{O}$
Do not allow OH^{-}for reagent
Product 1, balanced equation 1
Allow either equation for ammonia
(b) Reaction 2

Ammonia (conc / xs)
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-}$ Product 1, balanced equation 1
Note that the equation must start from the hydroxide $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]$
(c) Reaction 3
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ / any identified soluble carbonate / NaHCO_{3}
Do not allow NaCO_{3} or any insoluble carbonate but mark on

1
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{CuCO}_{3}+6 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{OR}\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CuCO}_{3}+6 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Na}^{+}$
OR $2\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{CuCO}_{3}+11 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
OR with NaHCO_{3}
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{HCO}_{3}^{-} \rightarrow \mathrm{CuCO}_{3}+6 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+}$
Product 1, balanced equation 1
(d) Reaction 4

HCl (conc / xs) / NaCl
Allow any identified soluble chloride
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$
Product 1, balanced equation 1

