

A-Level Chemistry

Reactions of Metal Aqua Ions

Question Paper

Time available: 78 minutes Marks available: 70 marks

www.accesstuition.com

4	This question is about iron
1.	·

(a) Discuss the role of iron as a heterogeneous catalyst in the Haber process.

$$3 H_2 + N_2 \rightleftharpoons 2 NH_3$$

Your answer should include:

• the meaning of the term heterogeneous catalyst

and its ions.

how iron acts as a heterogeneous catalyst

	the factors that affect the efficiency and lifetime of the catalyst.			
_				

(6)

Fe ²⁺ ions catalyse the reaction between peroxodisulfate(VI) ions and iodide ions in aqueous solution.
$S_2O_8^{2-}(aq) + 2 I^-(aq) \rightarrow 2 SO_4^{2-}(aq) + I_2(aq)$
Explain why this reaction is slow before the catalyst is added. Give two equations to show how Fe ²⁺ ions catalyse this reaction.
Why reaction is slow before catalyst added
Equation 1
Equation 2
Give a reason why Zn ²⁺ ions do not catalyse the reaction in part (b).
Give a reason why Zn ²⁺ ions do not catalyse the reaction in part (b).

(d) Iron reacts with dilute hydrochloric acid to form iron(II) chloride and hydrogen.

$$Fe(s) + 2 HCI(aq) \rightarrow FeCI_2(aq) + H_2(g)$$

A 0.998 g sample of pure iron is added to 30.0 cm³ of 1.00 mol dm⁻³ hydrochloric acid.

One of these reagents is in excess and the other reagent limits the amount of hydrogen produced in the reaction.

Calculate the maximum volume, in m³, of hydrogen gas produced at 30 °C and 100 kPa.

Give your answer to 3 significant figures.

In your answer you should identify the limiting reagent in the reaction.

The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Volume of hydrogen _____ m³

(6)

The figure below shows some reactions of iron ions in aqueous solution.

(e) Identify A and state its colour.

Identity _____

Colour _____

(2)

JIVE 8	In ionic equation for the reaction of $[Fe(H_2O)_6]^{3+}$ with aqueous Na_2CO_3 to form B
Formu	ıla
Colou	r
lonic e	equation
	·
	In why an aqueous solution containing $[Fe(H_2O)_6]^{3+}$ ions has a lower pH than an substitution containing $[Fe(H_2O)_6]^{2+}$ ions.

2.

Some reactions of the $[AI(H_2O)_6]^{3+}$ (aq) ion are shown.

(a) Give the formula of the white precipitate **B**.

State **one** other observation when $Na_2CO_3(aq)$ is added to a solution containing $[AI(H_2O)_6]^{3+}(aq)$ ions.

Give an equation for this reaction.

Formula of **B**Observation

Equation

(b) Give the formula of the complex ion **C**.

State one condition needed for the formation of ${\bf C}$ from $[{\rm AI}({\rm H_2O})_6]^{3+}({\rm aq})$ and ${\rm NaOH}({\rm aq})$.

Give an equation for this reaction.

Formula of C _____

Condition _____

Equation

(c) Deduce the formula of the complex ion A.

(1)

(3)

(3)

)	Explain, with the use of an equation, why a solution containing $[Al(H_2O)_6]^{3+}$ has a pH $^{-1}$	<7
	Equation	
	Explanation	

(Total 10 marks)

3. The diagram shows some reactions of aqueous iron ions.

(a) Give the formula of **Precipitate J** and state its colour.

Formula of J
Colour
Equation

(3)

Formula of L		
Equation		
Suggest a reagent for l	Reaction 3.	
Give the formula of Pr e	ecipitate M and state its colour.	
Formula of M		
Colour		
Transition metal compl	exes have different shapes and ma	ny show isomerism.
isomerism.	shapes of complexes and show how plexes of cobalt(II) and platinum(II).	they lead to different types of
	cructures of the examples chosen.	
		

(Total 14 marks)

(6)

When anhydrous aluminium chloride reacts with water, solution ${\bf Y}$ is formed that contains complex aluminium ion, ${\bf Z}$, and chloride ions.
Give an equation for this reaction.
Give an equation to show how the complex ion Z can act as a Brønsted–Lowry acid with water.
Describe two observations you would make when an excess of sodium carbonate solution is added to solution Y .
Give an equation for the reaction. In your equation, include the formula of each complex aluminium species.
Observation 1
Observation 2
Equation
Aqueous potassium hydroxide is added, until in excess, to solution Y .
Describe two observations you would make. For each observation give an equation for the reaction that occurs. In your equations, include the formula of each complex aluminium species.
Observation 1
Equation 1
Observation 2

www.accesstuition.com

5.	Consider the following reaction scheme that starts from aqueous [Cu(H ₂ O)6] ²⁺ ions.

For each of the reactions 1 to 4, identify a suitable reagent, give the formula of the coppercontaining species formed and write an equation for the reaction.

(a)	Reaction 1	
	Reagent	
	Copper-containing species	
	Equation	
(b)	Reaction 2	(3)
	Reagent	
	Copper-containing species	
	Equation	(3)
(c)	Reaction 3	(0)
	Reagent	
	Copper-containing species	
	Equation	(3)
(d)	Reaction 4	(3)
	Reagent	
	Copper-containing species	
	Equation	

(3)

(Total 12 marks)