

A-Level Chemistry

Redox

Mark Scheme

Time available: 61 minutes Marks available: 50 marks

www.accesstuition.com

Mark schemes

- 1.
- (a) Electron acceptor

Do not allow electron pair acceptor

(b)

$$SO_3^{2-} + H_2O \rightarrow SO_4^{2-} + 2H^+ + 2e^-$$

Allow multiples in each case

$$\text{Cr}_2\text{O}_7^{2-}$$
 + 14H⁺ + 6e⁻ \rightarrow 2Cr³⁺ + 7H₂O

$$3\mathsf{SO_3}^{2-} + \mathsf{Cr_2O_7}^{2-} + 8\mathsf{H^+} \to 3\mathsf{SO_4}^{2-} + 2\mathsf{Cr^{3+}} + 4\mathsf{H_2O}$$

[4]

1

1

1

1

М1 reaction of nitrogen/N₂ and oxygen/O₂ from the air (a) 2.

Must be at least one reference to air.

NOT reference to nitrogen/oxygen from the fuel.

Allow equation plus a reference to the air.

Allow combustion of nitrogen plus reference to the air.

NOT M1 if reference to reaction taking place in the catalytic converter.

1

M2 at high temperatures

Allow high energy/heat or very hot.

Allow heat/energy in the engine provides Ea

IGNORE references to pressure/spark

1

(b) Formation of acid rain / causes respiratory problems

> Allow (contributes to) ground level ozone / (photochemical) smog / toxic / poisonous

Allow makes water acidic / reacts with water to form nitric acid / (NO_x gases are) acidic

IGNORE greenhouse gases / global warming / damages ozone layer

IGNORE vague answers such as 'harmful to environment'/polluting /harmful

NOT reference to pH rising

(c) $NO_2 = (+)4 NH_3 = -3 N_2 = 0$ 1 **M2** $3NO_2 + 4NH_3 \rightarrow 7/2N_2 + 6H_2O$ ALLOW multiples/fractions $(6NO_2 + 8NH_3 \rightarrow 7N_2 + 12H_2O OR$ $1\frac{1}{2}NO_2 + 2NH_3 \rightarrow 1\frac{3}{4}N_2 + 3H_2O$ 1 (d) **M**1 Catalyst in different phase/state (to reactants) NOT (catalyst in different phase/state to) products allow catalyst in different phase/state to reactants and products 1 **M2** Speeds up reaction without being used up ALLOW speeds up the reaction by (providing alternative route for reaction and) lowering E_a NOT does not take part in the reaction 1 (e) incomplete combustion ignore equations ALLOW description of incomplete combustion (e.g. not enough oxygen) Allow O2 but NOT O for oxygen 1 [8] (a) Two correct CI ox states: HCIO = +1 HCI = -1 1 (b) Oxidation: $Cl_2 + 2H_2O \rightarrow 2HCIO + 2H^+ + 2e^-$ Accept - 2e on the other side Allow $Cl_2 + 2H_2O \rightarrow 2ClO^- + 2e^-$ 1 Reduction: $Cl_2 + 2H^+ + 2e^- \rightarrow 2HCl$ Allow $Cl_2 + 2e^- \rightarrow 2Cl^-$ If both equations correct but incorrect order, allow 1 Ignore state symbols 1 2NaOH + Cl₂ → NaCl + NaClO + H₂O (c) Allow $20H-+CI_2 \rightarrow CI^-+CIO^-+H_2O$ Allow NaOCI Ignore state symbols

3.

	(d)	mol ClO ⁻ = conc × vol = 0.0109×0.02 = $0.000218 / 2.18 \times 10^{-4}$ mol	1	
		mol KI = $0.000218 \times 2 = 0.000436$ mol $M2 = M1 \times 2$ If incorrect ratio, M2 & M3 = 0		
		ii iiiooireet ratio, iviz a ivio – o	1	
		mass KI = Mr \times mol = 166.0 \times 0.000436 = 0.072376 g = 72.4 (mg)		
		$M3 = M1 \times 2 \times 166.0 \times 1000$		
		Must be to 3 sig figs	1	
		black solid/ppt appears/forms (in a colourless solution) or (colourless solution) turns brown (solution)	•	
		Not purple. Not red. Not brown ppt/solid		
		Ignore grey.	1	
	(0)	KOIO KCI LOO	•	
	(e)	$KCIO_4 \rightarrow KCI + 2O_2$ Ignore state symbols		
		Allow multiples		
		, men manapiec	1	
		$\Delta H = -436434 = -2 \text{ kJ mol}^{-1}$		
		Must be negative		
		Mark independently		
		Allow consequential for multiples		
			1	[10]
4.	(a)	NO_2^- +3 or III or 3 or 3+		
		NO +2 or II or 2 or 2+	1	
		140 12 01 11 01 2 01 21	1	
	(b)	$NO_2^- + e^- + 2H^+ \rightarrow NO + H_2O$ (OR double)	1	
			1	
	(c)	$2I^- \rightarrow I_2 + 2e^-$ (OR half)	1	
			1	
	(d)	$2NO_{2-} + 2I^{-} + 4H^{+} \rightarrow I_{2} + 2NO + 2H_{2}O$	_	
			1	

(e) Oxidising agent

5.

6.

Allow to accept / gain electrons

Allow Oxidant

Do not allow accept / gain pairs of electrons

Do not allow Oxidise

(f) Mol ClO₃⁻ =
$$0.02 \times \frac{27.4}{1000} = 5.48 \times 10^{-4}$$

Mol NO₂⁻ =
$$\frac{5}{2}$$
 (0.02 × $\frac{27.4}{1000}$) = 1.37 × 10⁻³)

$$[NO_2^-] = mol\ NO_2^- / (\frac{25}{1000})$$

 $[NaNO_2] = 0.0548 \text{ moldm}^{-3}$

Conc NaNO₂ =
$$(0.0548) \times 69.0 = 3.78 \text{ gdm}^{-3}$$

Minimum 2 sf

(a) $6S_2O_3^{2-} + BrO_3^{-} + 6H^+ \rightarrow 3S_4O_6^{2-} + Br^- + 3H_2O$

Check the formulae and charges carefully and penalise any transcription errors.

Allow multiples and fractions.

Ignore state symbols.

(b) Mol of thio = $25.0 \times 0.00100 / 1000 = 2.50 \times 10^{-5}$ and

Mol of bromate(V) = $(1/6) \times 2.5 \times 10^{-5} = 4.17 \times 10^{-6}$

If equation in Q5a is wrong, mark consequentially.

Vol of bromate(V) = $(4.17 \times 10^{-6} / 0.005) \times 1000 = 0.83 \text{ cm}^3$

Lose this mark if (correct) unit of volume not given.

Do not penalise precision.

(c) Use a more dilute solution of sodium bromate

Allow 'use a bigger volume of sodium thiosulfate solution'.

(a) (i) **M1** (+) 4 **OR** IV

M2 (+) 6 OR VI

1

1

1

1

1

1

1

1

1

[4]

2

[10]

(ii) It / Chlorine has gained / accepted electron(s)

OR

Correctly balanced half-equation eg $Cl_2 + 2e^- \longrightarrow 2Cl^-$ Credit 1 or 2 electrons but not lone pair. The idea of 'reduction' alone is not enough.

(b) (i)
$$6KI + 7H_2SO_4 \longrightarrow 6KHSO_4 + 3I_2 + S + 4H_2O$$

(ii)
$$2l^- \longrightarrow l_2 + 2e^-$$

OR

$$8I^- \longrightarrow 4I_2 + 8e^-$$

Ignore charge on the electron unless incorrect. Or multiples.

Credit the electrons being subtracted on the LHS. Ignore state symbols.

(iii)
$$H_2SO_4 + 8H^+ + 8e^- \longrightarrow H_2S + 4H_2O$$

OR

$$SO_4^{2-}$$
 + **10**H⁺ + **8**e⁻ \longrightarrow H₂S + **4**H₂O

Ignore charge on the electron unless incorrect.

Or multiples.

Credit the electrons being subtracted on the RHS. Ignore state symbols.

(ii) The precipitate / solid / it does not dissolve / is insoluble / remains

OR a white / cream / yellow solid / precipitate

OR stays the same

OR no (visible / observable) change

OR no effect / no reaction

Ignore 'nothing (happens)'.

Ignore 'no observation'.

1

1

1

1

1

- (iii) The silver nitrate is acidified to
 - react with / remove (an)ions that would interfere with the test
 Credit a correct reference to ions that give a 'false positive'.
 - prevent the formation of other <u>silver precipitates / insoluble silver compounds</u> that would interfere with the test
 Do not penalise an incorrect formula for an ion that is written in addition to the name.
 - remove (other) <u>ions that react with the silver nitrate</u>
 If only the formula of the ion is given, it must be correct.
 - react with / remove carbonate / hydroxide / sulfite (ions)
 Ignore 'sulfate'.
- (iv) HCl would <u>form a (white) precipitate / (white) solid</u> (with silver nitrate and this would interfere with the test)

It is not sufficient simply to state either that it will interfere **or** simply that the ions / compounds react to form AgCl

(d) (i) Any **one** from

Ignore 'to clean water'.

- to sterilise / disinfect water
 Ignore 'water purification' and 'germs'.
- to destroy / kill microorganisms / bacteria / microbes / pathogens
 Credit 'remove bacteria etc' / prevent algae.
- (ii) The (health) benefit outweighs the risk

OR

a clear statement that once it has done its job, little of it remains

OR

used in (very) dilute concentrations / small amounts / low doses

1

1

1

(iii)
$$Cl_2 + H_2O \longrightarrow HCIO + HCI$$

OR

$$Cl_2 + H_2O \longrightarrow 2H^+ + CIO^- + CI^-$$

OR

$$2Cl_2 + 2H_2O \longrightarrow 4HCI + O_2$$

Credit HOCl or CIOH

Or multiples.

Credit other ionic or mixed representations.

Ignore state symbols.

(e) In either order - Both required for one mark only

Credit correct ionic formulae.

NaClO (OR NaOCl) and NaCl

Give credit for answers in equations unless contradicted.

[14]

1