

A-Level Chemistry

Redox

Question Paper

Time available: 61 minutes Marks available: 50 marks

1. This question is about redox reactions.
(a) State, in terms of electrons, the meaning of the term oxidising agent.
\qquad
(b) $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ can oxidise $\mathrm{SO}_{3}{ }^{2-}$ in acidic conditions to form Cr^{3+} and $\mathrm{SO}_{4}{ }^{2-}$

Deduce a half-equation for the oxidation of $\mathrm{SO}_{3}{ }^{2-}$ to $\mathrm{SO}_{4}{ }^{2-}$
Deduce a half-equation for the reduction of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ to Cr^{3+}
Deduce the overall equation for the oxidation of $\mathrm{SO}_{3}{ }^{2-}$ by $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
Half-equation for the oxidation of $\mathrm{SO}_{3}{ }^{2-}$ to $\mathrm{SO}_{4}{ }^{2-}$

Half-equation for the reduction of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ to Cr^{3+}

Overall equation
\qquad
2. This question is about emissions of oxides of nitrogen from petrol and diesel engines.
(a) Explain how oxides of nitrogen are formed in engines.
\qquad
\qquad
\qquad
\qquad
(b) State why it is desirable to decrease emissions of oxides of nitrogen from vehicles.
\qquad
\qquad
\qquad
(c) Modern diesel vehicles use diesel exhaust fluids, such as AdBlue, to decrease emissions of oxides of nitrogen.

AdBlue reacts with water in the hot exhaust gases to form ammonia.
In the presence of a catalyst the ammonia reacts with oxides of nitrogen to form nitrogen and water.

Give the oxidation state of nitrogen in each of $\mathrm{NO}_{2}, \mathrm{NH}_{3}$ and N_{2}
Complete the equation for the reaction between NO_{2} and NH_{3}
Oxidation state of nitrogen in

$$
\begin{array}{lll}
\mathrm{NO}_{2} & \mathrm{NH}_{3} & \mathrm{~N}_{2} \\
\hline
\end{array}
$$

Equation

\qquad $\mathrm{NO}_{2}+$ \qquad $\mathrm{NH}_{3} \rightarrow$ \qquad $\mathrm{N}_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$
(d) Petrol vehicles have a catalytic converter which decreases emissions of oxides of nitrogen. Platinum in the catalytic converter acts as a heterogeneous catalyst.

State the meaning of the term heterogeneous catalyst.
\qquad
\qquad
\qquad
\qquad
(e) Some carbon particulates are also formed in both diesel and petrol vehicles.

Explain why carbon particulates are formed.
\qquad
\qquad
3. Chlorine is used to decrease the numbers of microorganisms in water.

When chlorine is added to water, there is a redox reaction, as shown by the equation

$$
\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HClO}+\mathrm{HCl}
$$

(a) Deduce the oxidation state of chlorine in HClO and the oxidation state of chlorine in HCl

Oxidation state of chlorine in HClO \qquad
Oxidation state of chlorine in HCl \qquad
(b) Give two half-equations to show the oxidation and reduction processes that occur in this redox reaction.

Oxidation half-equation \qquad
Reduction half-equation \qquad
(c) Chlorine is reacted with cold, aqueous sodium hydroxide in the manufacture of bleach.

Give an equation for this reaction between chlorine and sodium hydroxide.
\qquad
(d) The concentration of ClO^{-}ions in bleach solution can be found by reaction with iodide ions.

The overall equation for this reaction is shown.

$$
\mathrm{ClO}^{-}+2 \mathrm{I}^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{I}_{2}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

A sample of bleach solution was found to contain ClO^{-}ions with a concentration of 0.0109 $\mathrm{mol} \mathrm{dm}{ }^{-3}$
Potassium iodide is added to a $20.0 \mathrm{~cm}^{3}$ portion of this bleach solution.
Calculate the mass, in mg , of potassium iodide needed to react with all of the ClO^{-}ions in the sample of bleach.
Give your answer to the appropriate number of significant figures.
Give one observation during this reaction.
Mass of potassium iodide \qquad mg

Observation \qquad
\qquad
\qquad
\qquad
(e) Potassium chlorate(VII), KClO_{4}, is used in fireworks. When potassium chlorate(VII) decomposes, it produces potassium chloride and oxygen.

Give an equation for the decomposition of potassium chlorate(VII).
Use the data in the table to calculate the enthalpy change for this reaction.

Substance	$\Delta_{\mathrm{f}} \mathbf{H} / \mathbf{k J ~ m o l}^{\mathbf{- 1}}$
$\mathrm{KClO}_{4}(\mathrm{~s})$	-434
$\mathrm{KCl}(\mathrm{s})$	-436

Equation \qquad

Enthalpy change \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$
4. When an acidified solution of sodium nitrite $\left(\mathrm{NaNO}_{2}\right)$ is added to aqueous potassium iodide, iodine and nitrogen monoxide (NO) are formed.
(a) Give the oxidation state of nitrogen in the following species.
$\mathrm{NO}_{2}{ }^{-}$ \qquad
NO \qquad
(b) Write a half-equation for the conversion of NO_{2}^{-}in an acidic solution into NO
\qquad
(c) Write a half-equation for the conversion of I^{-}into I_{2}
\qquad
(d) Write an overall ionic equation for the reaction of NO_{2}^{-}in an acidic solution with I^{-}
\qquad
(e) State the role of NO_{2}^{-}in the reaction with I^{-}
\qquad
(f) In aqueous solution, nitrite ions react with acidified chlorate(V) ions according to the equation

$$
2 \mathrm{ClO}_{3}^{-}+5 \mathrm{NO}_{2}^{-}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Cl}_{2}+5 \mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

$25.0 \mathrm{~cm}^{3}$ sample of an aqueous solution of sodium nitrite required $27.40 \mathrm{~cm}^{3}$ of a 0.0200 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ solution of potassium chlorate (V) for complete reaction.

Calculate the concentration, in $\mathrm{g} \mathrm{dm}^{-3}$, of sodium nitrite in the sample.
Concentration of sodium nitrite \qquad $\mathrm{g} \mathrm{dm}^{-3}$
5. Sodium bromate (V) is a primary standard. This means that its solution can be used to check the concentration of other solutions.
(a) The half-equations for the reaction between bromate (V) ions and thiosulfate ions in the presence of acid are

$$
\begin{gathered}
2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \longrightarrow \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{e}^{-} \\
\mathrm{BrO}_{3}^{-}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-} \longrightarrow \mathrm{Br}^{-}+3 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Use these half-equations to deduce an overall equation for this reaction.
\qquad
\qquad
(b) A laboratory technician decided to use a $5.00 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ solution of sodium bromate (V) to check the concentration of a sodium thiosulfate solution that was labelled as $1.00 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$. The sodium bromate (V) solution was placed in the burette and 25.0 cm^{3} of the sodium thiosulfate solution was pipetted into a conical flask.

Use the concentration of the sodium thiosulfate solution to calculate the expected titre value in this experiment.
Show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Consider the titre value that you have calculated in part (b).

Suggest one change to the experimental procedure in part (b) that would enable you to calculate a more accurate value for the concentration of the sodium thiosulfate solution.
\qquad
\qquad
\qquad
(Total 4 marks)
6. This question is about Group 7 chemistry.
(a) Sea water is a major source of iodine.

The iodine extracted from sea water is impure. It is purified in a two-stage process.

Stage $1 \quad \mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \longrightarrow 2 \mathrm{HI}+\mathrm{H}_{2} \mathrm{SO}_{4}$
Stage $2 \quad 2 \mathrm{HI}+\mathrm{Cl}_{2} \longrightarrow \mathrm{I}_{2}+2 \mathrm{HCl}$
(i) State the initial oxidation state and the final oxidation state of sulfur in Stage 1.

Oxidation state of S in SO_{2} \qquad
Oxidation state of S in $\mathrm{H}_{2} \mathrm{SO}_{4}$ \qquad
(ii) State, in terms of electrons, what has happened to chlorine in Stage 2.
\qquad
\qquad
(b) When concentrated sulfuric acid is added to potassium iodide, iodine is formed in the following redox equations.

$$
\begin{aligned}
& \ldots \ldots . \mathrm{KI}+\ldots . . . \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \longrightarrow \ldots . \mathrm{KHSO}_{4}+\ldots . . . \mathrm{I}_{2}+\mathrm{S}+\ldots . . \mathrm{H}_{2} \mathrm{O} \\
& 8 \mathrm{KI}+9 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 8 \mathrm{KHSO}_{4}+4 \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

(i) Balance the equation for the reaction that forms sulfur.
(ii) Deduce the half-equation for the formation of iodine from iodide ions.
\qquad
(iii) Deduce the half-equation for the formation of hydrogen sulfide from concentrated sulfuric acid.
\qquad
(c) A yellow precipitate is formed when silver nitrate solution, acidified with dilute nitric acid, is added to an aqueous solution containing iodide ions.
(i) Write the simplest ionic equation for the formation of the yellow precipitate.
\qquad
(ii) State what is observed when concentrated ammonia solution is added to this yellow precipitate.
\qquad
\qquad
(iii) State why the silver nitrate solution is acidified when testing for iodide ions.
\qquad
\qquad
\qquad
(iv) Explain why dilute hydrochloric acid is not used to acidify the silver nitrate solution in this test for iodide ions.
\qquad
\qquad
\qquad
(d) Chlorine is toxic to humans. This toxicity does not prevent the large-scale use of chlorine in water treatment.
(i) Give one reason why water is treated with chlorine.
\qquad
\qquad
(ii) Explain why the toxicity of chlorine does not prevent this use.
\qquad
\qquad
\qquad
(iii) Write an equation for the reaction of chlorine with cold water.
\qquad
(e) Give the formulas of the two different chlorine-containing compounds that are formed when chlorine reacts with cold, dilute, aqueous sodium hydroxide.

Formula 1 \qquad
Formula 2 \qquad

