

A-Level Chemistry

Shapes of Molecules

Mark Scheme

Time available: 63 minutes Marks available: 54 marks

Mark schemes

1. Shapes:

Must show Ip on NCl_{3}

Name of shape of $\mathrm{NCl}_{3}=$ Pyramidal
Allow tetrahedral

Bond Angle $=109.5^{\circ}$
Allow 109 - 109.5°
(4 bp and 0 lp) electron pairs repel equally / electron pairs repel to be as far apart as possible Do not allow atoms repel equally
Allow bonds repel equally
2.

M1 two lone pairs on each O atom
and
$\delta+$ and δ - on each $\mathrm{H}-\mathrm{O}$ bond
(permanent) dipole-dipole $\underline{\mathrm{OR}}$ van der Waals force (between methoxymethane molecules)

Allow vdW

Hydrogen bonds are stronger/est intermolecular force
Allow more energy to break/overcome hydrogen bonding
Allow converse arguments
M2 dotted/broken line shown between lone pair on one molecule and the correct H on another

M3 O........H-O in straight line, dependent on M2
Ignore any partial charges on $\mathrm{C}-\mathrm{H}$ or $\mathrm{C}-\mathrm{O}$ bonds
For straight line in M3, allow a deviation of up to 15°
If a different molecule containing hydrogen bonding due to $\mathrm{O}-\mathrm{H}$ bond drawn (e.g. methanol, water) or an incorrect attempt at the structure of ethanol, then maximum of 2 marks (i.e. only penalise if would score all three marks otherwise)
(b) Hydrogen bonds (between ethanol molecules)

Allow converse arguments
(c)

POCl_{3} : allow any shape showing 1 double bond between P and O and 3 P-Cl bonds
ClF_{4}^{-}: allow any shape showing $4 \mathrm{Cl}-\mathrm{F}$ bonds and 2 lone pairs
(distorted) Tetrahedral

Square planar
90°
3. (a) $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{SO}_{2}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}$

Allow $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+2 \mathrm{H}_{3} \mathrm{O}+\rightarrow \mathrm{SO}_{2}+\mathrm{S}+3 \mathrm{H}_{2} \mathrm{O}$
Allow $1 / 2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}+\mathrm{H}^{+} \rightarrow 1 / 2 \mathrm{SO}_{2}+1 / 2 \mathrm{~S}+1 / 2 \mathrm{H}_{2} \mathrm{O}$
Allow $1 / 2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}+\rightarrow 1 / 2 \mathrm{SO}_{2}+1 / 2 \mathrm{~S}+11 / 2 \mathrm{H}_{2} \mathrm{O}$
Ignore state symbols
NOT multiples
NOT if any spectator ions included (unless crossed out)
(b) M1 acid(ic) / acidity / produces H^{+}

M1 Allow low(ers) pH
Ignore toxic / soluble
Ignore sulfurous / sulfuric / $\mathrm{H}_{2} \mathrm{SO}_{4}$
Ignore rain
Ignore proton donor (unless qualified, e.g. reacts with
water to form a proton donor)
NOT any other named acid

M2 $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3} / \mathrm{H}^{+}+\mathrm{HSO}_{3}^{-}$
M2 Allow $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{3}{ }^{2-}$
Allow $\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{3}^{-}$
Allow $\mathrm{SO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{3}{ }^{2-}$
Allow multiples
Ignore state symbols
(c) M1

Allow any suitable representation of lone pairs (e.g.
dots, crosses, lobes with/without dots/crosses)

M2 104 12^{2}
M2 Allow 104-105 ${ }^{\circ}$

M3 lone pairs repel more (strongly) than bond(ing) pairs
M3 Allow non-bonding pair for lone pair
Allow covalent bond for bond(ing) pair
Allow shared pair for bond(ing) pair
Allow OH bond for bond(ing) pair
Allow bond for bond(ing) pair
NOT OH or O-H without the word bond for bond(ing) pair

M4 so bond angle reduced from/less than 10912° / tetrahedral
M4 Allow bond angle reduced from 120° if bent with one lone pair in M1
Allow reduced from 109°
Allow reduced by 2.5° per lone pair or 5° if $\mathbf{~ M 2 ~ c o r r e c t ~}$
(d)

This question is marked using levels of response. Refer to the Mark Scheme Instructions for examiners for guidance on how to mark this question

Level 3	
5-6 marks	All stages are covered and the explanation of each stage is correct and virtually complete. (6×5) Answer is well structured, with no repetition or irrelevant points. Accurate and clear expression of ideas with no errors in use of technical terms.
Level 2 $\mathbf{3 - 4}$ marks	All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages covered and the explanations are generally correct and virtually complete $(4 \vee 3)$ Answer has some structure. Ideas are expressed with reasonable clarity with, perhaps, some repetition or some irrelevant points. If any, only minor errors in use of technical terms.
Level 1	Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR only one stage is covered but the explanation is generally correct and virtually complete $(2 v 1)$ Answer includes statements which are presented in a logical 1-2 marks
$\mathbf{0}$ marks	Insufficient correct Chemistry to warrant a mark

Indicative Chemistry content

Stage 1 Method

(1a) Idea of using disappearing cross or colorimetry
(1b) Puts acid or thiosulfate into container on/with cross or in colorimeter
(1c) Add second reactant and start timing

Stage 2 Measurements

(2a) Repeat at different temperatures (if number of temperatures stated, must be more than two)
(2b) Record time, t, for cross to disappear / defined reading on colorimeter
(2c) Idea of ensuring other variables (cross, volumes, concentrations) kept constant (apart from T)

Stage 3 Use of Results

(3a) $1 / \mathrm{t}$ (or $1000 /$ time, etc) is a measure of rate
(3b) plot of rate (or $1 / \mathrm{t}$ etc) (y -axis) against T (x -axis) (can come from labelled axes on sketch) (IGNORE T against rate)
(3c) sketch of plot as shown (Allow 3c if axes not labelled but NOT if incorrectly labelled)

4. (a) $\mathrm{F}-\stackrel{\bullet}{\bullet \bullet}-\mathrm{F}$

Allow diagram with 2 bonds and 3 lone pairs

Linear
180°
(b) Lone pairs repel more than bond pairs

Allow idea of reducing bond angle
bond angle will be lower (than regular tetrahedral angle) / bond angle of 103-106 ${ }^{\circ}$
(c) Van der Waals forces

Allow London forces, dispersion forces, induced dipole-dipole
Apply List for M1.
Allow M2 if vdW mentioned in M1, otherwise CE=0
(Uneven distribution of electrons in) one molecule induces dipole in neighbouring/another /nearby molecule
symmetrical molecule / dipoles cancel
OR
no hydrogens bonded to F (N or O), therefore no hydrogen bonding
5. (a) Power of an atom to attract a pair of electrons in a covalent bond.

Allow power of an atom to attract a bonding/shared pair of electrons
Allow power of an atom to withdraw electron density from a covalent bond
Not lone pair Not Element
(b) Difference in electronegativity leads to bond polarity If chloride (ions) mentioned then $C E=0$
(dipoles don't cancel therefore the molecule has an overall permanent dipole) and there is an attraction between $\partial+$ on one molecule and $\partial-$ on another
partial charges should be correct if shown and can score M2 from diagram
(c)

SiH_{4}	Tetrahedral		1 shape \& no tick
PH_{3}	Pyramidal (trigonal) Allow tetrahedral	\checkmark	1 shape \& tick
BeCl_{2}	Linear		1 shape \& no tick
$\mathrm{CH}_{3} \mathrm{Cl}$	(Distorted)Tetrahedral	\checkmark	1 shape \& tick

If shapes are drawn rather than named then penalise first mark gained
6. (a) $\mathrm{Al}+1.5 \mathrm{Cl}_{2} \rightarrow \mathrm{AlCl}_{3}$

Accept multiples.
Also $2 \mathrm{Al}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{Cl}_{6}$
Ignore state symbols.
(b) Coordinate / dative (covalent)

If wrong $C E=0 / 2$ if covalent mark on.

Electron pair on Cl - donated to $\mathrm{Al}\left(\mathrm{Cl}_{3}\right)$
QoL
Lone pair from Cl^{-}not just Cl
Penalise wrong species.
(c) $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ or AlBr_{3}

Allow $\mathrm{Br}_{3} \mathrm{Al}$ or $\mathrm{Cl}_{6} \mathrm{Al}_{2}$
Upper and lower case letters must be as shown.
Not $2 \mathrm{AlCl}_{3}$
(d) SiCl_{4} / silicon tetrachloride

Accept silicon(4) chloride or silicon(IV) chloride.
Upper and lower case letters must be as shown.
Not silicon chloride.
(e)

Accept shape containing 5 bonds and no lone pairs from TI to each of 5 Br atoms.
Ignore charge.

Trigonal bipyramid(al)
(f) (i) $\quad \mathrm{Cl}-\mathrm{TI}-\mathrm{C}$

Accept this linear structure only with no lone pair on Tl
(ii) (Two) bonds (pairs of electrons) repel equally / (electrons in) the bonds repel to be as far apart as possible

Dependent on linear structure in (f)(i).
Do not allow electrons / electron pairs repel alone.
(g) Second

