

A-Level Chemistry

Structure of Benzene

Question Paper

Time available: 68 minutes Marks available: 66 marks

www.accesstuition.com

Figure 1 shows the relative stability of compared to

(a) Use **Figure 1** and the data shown in the table below to calculate ΔH_2

	ΔH / kJ mol ⁻¹
Enthalpy of atomisation for carbon	+715
Enthalpy of atomisation for hydrogen	+218
Bond enthalpy (C-C)	+348
Bond enthalpy (C=C)	+612
Bond enthalpy (C-H)	+412

 ΔH_2 _____ kJ mol⁻¹

(3)

(b) Explain, in terms of structure and bonding, why

an	

is more thermodynamically stable than

(1)

(c) A mixture of concentrated nitric acid and concentrated sulfuric acid reacts with benzene.

Figure 2 shows the incomplete mechanism for this reaction.

Name the mechanism.

Complete the mechanism in Figure 2 by adding

- any lone pairs of electrons involved in each step
- two curly arrows in step 1
- a curly arrow in step 2
- a curly arrow in step 3
- a curly arrow in step 4.

Name of mechanism _____

Figure 2

$$O_2N - O$$
 $O_2N - O$
 $O_2N - O$

$$O_2N - O_2^+$$
 O_2N^+
 O_2N^+
 O_2N^+
 O_3N^+
 O_4
 O_4

$$O_2N^+$$
 Step 3 O_2N +

$$O_2N$$
 $+$
 O_2N
 O_2N
 O_2N

(Total 9 marks)

(5)

_	
2	

Data about the hydrogenation of cyclohexene and of benzene are given.

$$\Delta H^{e} = -120 \text{ kJ mol}^{-1}$$

$$+ 3H_{2} \longrightarrow \Delta H^{e} = -208 \text{ kJ mol}^{-1}$$

(a) Explain the bonding in and the shape of a benzene molecule.

Compare the stability of benzene with that of the hypothetical cyclohexa-1,3,5-triene molecule.

molecule.		
Use the data in your answer.		
•		

(6)

	(b)		enthalpy of hexene.	hydrog	jenatioi	n of cyclo	ohexa-	-1,3-diene	is nc	ot exactly de	ouble that	of	
		Sugg value		for the	e entha	lpy of hy	droger	nation of cy	ycloh	exa-1,3-die	ene and ju	stify your	
													(3)
												(Total 9 m	
3.			or the hydi		tion of (cyclohex	ene ar	nd of benzo	ene,	together w	ith the ent	thalpies of	
				+	H ₂		\rightarrow		ΔΙ	<i>H</i> [⊕] = –120 k	J mol ^{–1}		
				+	3H ₂		\rightarrow		ΔΙ	<i>H</i> [⇔] = –208 k	J mol−¹		
	(a)	(i)	Use these hypothetic							more stable	e than the	•	

(1)

	cyclohexa-1,3,5-triene.
	ee carbon-carbon bonds are labelled on the structures shown. se bonds are of different lengths.
	w x y
	~
<i>N</i> rit	e the letters w , x and y in order of increasing bond length.
∕Vrit	e the letters w , x and y in order of increasing bond length.
	e the letters w , x and y in order of increasing bond length. structures of two cyclic dienes are shown.
	structures of two cyclic dienes are shown.
The	structures of two cyclic dienes are shown. cyclohexa-1,4-diene cyclohexa-1,3-diene Use the enthalpy of hydrogenation data given opposite to calculate a value for the
The	structures of two cyclic dienes are shown. cyclohexa-1,4-diene cyclohexa-1,3-diene Use the enthalpy of hydrogenation data given opposite to calculate a value for the enthalpy of hydrogenation of cyclohexa-1,4-diene.

(111)	Explain your answers to part (i) and part (ii) in terms of the bonding in these two dienes.

(3)

(Total 8 marks)

(a) The molecule cyclohexatriene does not exist and is described as hypothetical.

Use the following data to state and explain the stability of benzene compared with the hypothetical cyclohexatriene.

+
$$3H_2$$
 \longrightarrow $\Delta H^{\oplus} = -208 \text{ kJ mol}^{-1}$

		

(4)

(b) Benzene can be converted into amine **U** by the two-step synthesis shown below.

The mechanism of Reaction 1 involves attack by an electrophile.

Give the reagents used to produce the electrophile needed in Reaction 1.

Write an equation showing the formation of this electrophile.

(c) Cyclohexene can be converted into amine **W** by the two-step synthesis shown below.

Suggest an identity for compound **V**.

For Reaction 3, give the reagent used and name the mechanism.

For Reaction 4, give the reagent and condition used and name the mechanism.

(6)

		Equations and mechanisms with curly arrows are not required.	
	(d)	Explain why amine U is a weaker base than amine W .	()
			(3) (Total 19 marks)
E	(a)	Use the following data to show the stability of benzene relative to the hypothetical	,
5.		cyclohexa-1,3,5-triene.	

Give a reason for this difference in stability.

+
$$3H_2$$
 \rightarrow $\Delta H^{\Theta} = -208 \text{ kJ mol}^{-1}$

(b) Consider the following reaction sequence which starts from phenylamine.

(i)	State and explain the difference in base strength between phenylamine a ammonia.				

(3)

(4)

Name and product of \$	utline a mechanism for the reaction in Step 1 and name the organ tep 1.				
					

(6)

						_
						_
						_
						_
						_
						_
Name the type this reaction.	of linkage w	hich is broke	n in Step 3 a	and suggest	: a suitable re	agent for

www.accesstuition.com