

A-Level Chemistry

 The Mole and Avogadro's Constant
Mark Scheme

Time available: 52 minutes Marks available: 48 marks

Mark schemes

1. (a) M1 $n\left(\mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}\right)=33.50 \times 0.100 \div 1000=\underline{0.00335}$

M2 $n\left(\mathrm{l}_{2}\right)=0.00335 \div \mathbf{2}=0.001675$ (from eqn 2)

$$
\text { M2 = M1 } \div 2
$$

M3 $\mathrm{n}\left(\mathrm{ClO}^{-}\right)$in $25 \mathrm{~cm}^{3}$ pipette $=0.001675$ (from eqn 1)
M3 = M2

M4 $\mathrm{n}\left(\mathrm{ClO}^{-}\right)$in $100 \mathrm{~cm}^{3}$ flask $=0.001675 \underline{\mathrm{x} 4}=0.00670=\mathrm{n}(\mathrm{NaClO})$ in original $10 \mathrm{~cm}^{3}$ sample

$$
\text { M4 }=\text { M3 } \times 4
$$

M5 mass $(\mathrm{NaClO})=0.00670 \underline{\mathrm{x} 7.5}=0.499 \mathrm{~g}$

$$
\text { M5 = M4 } \underline{x} 74.5
$$

M6 mass $($ bleach $)=10.0 \times 1.20=\underline{12} \mathrm{~g}$
M6 = mass of bleach

M7 \% by mass of $\mathrm{NaClO}=\frac{0.499}{12}=4.16 \%$
M7 = (M5 \div M6) $\times 100$ to 3 significant figures
Allow 4.15\% to 4.17\%
(b) 0.45%
2. (a) Selects correct titres

If 3 or more titres used them MAX 1 for conseq M3
mean titre $=\frac{9.75+9.65}{2}$
$=9.7(0) \mathrm{cm}^{3}$
Calculates mean
$\mathrm{mol} \mathrm{HCL}=0.102 \times 9.70 / 1000=9.89 \times 10^{-4}$
(allow $9.9 \times 10-4$ for M3 but check not via 4 titres in which case only 1 mark)
Calculates mol (working or result gains credit)
9.92×10^{-4} scores 1 if all 4 titres used
9.83×10^{-4} scores 1 if titres 1,2 , and 3 used
(b) $\mathrm{mol} \mathrm{MHCO}_{3}=$ ANS $3.1 \times 10\left(=9.89 \times 10^{-3}\right)$

Use ecf if wrong mean calculated above

$$
\mathrm{Mr}=\frac{1464 / 1000}{M 1}
$$

$$
\mathrm{Mr}=148(3 \mathrm{sf})
$$

Allow ecf following wrong mass conversion
(c) Suggestion: Use a larger mass of solid OR use a more concentrated solution of MHCO_{3} OR less concentrated / more dilute solution of HCl OR more MHCO_{3}

Cannot score justification mark unless suggestion correct, but suggestion could be after justification

Justification: So a larger titre/reading will be needed OR larger volume of HCl
Assume reference to the solution means the MHCO_{3}
(d) This question is marked using levels of response.

Level 3

Must use volumetric flask to access level 3
Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 then stage 3 .

All stages are covered and the description of each stage is complete
All stages are covered but up to 2 omissions/errors from different stages. If 2 omissions/errors from same stage only level 2 possible

Level 2

Answer is mainly coherent and shows progression from stage 1 to stage 3

All stages are covered but 3 omissions/errors
All stages are attempted

Level 1

Answer includes isolated statements but these are not presented in a logical order or show confused reasoning.

2 stages attempted
1 stage attempted $\quad 2$ marks

Level 0

Insufficient correct chemistry to gain a mark.

Indicative Chemistry content

Stage 1: transfers known mass of solid
a) Weigh the sample bottle containing the solid on a (2 dp) balance
b) Transfer to beaker* and reweigh sample bottle
c) Record the difference in mass

Or
d) Place beaker* on balance and tare
e) Transfer solid into beaker
f) Record mass

Or
g) Known mass provided
h) Transfers (known) mass into beaker*
i) Wash all remaining solid from sample bottle into beaker

Allow use of weighing boat
*Allow other suitable glassware including volumetric flask
Stage 2: Dissolves in water
a) Add distilled / deionised water
b) Stir (with a glass rod) or swirl
c) Until all solid has dissolved

Stage 3: Transfer, washing and agitation
a) Transfer to volumetric / graduated flask. Allow if a clear description/diagram given eg long necked flask with 250 cm³ mark
b) With washings
c) Make up to $250 \mathrm{~cm}^{3}$ / mark with water
d) Shakes/inverts/mixes
3. (a)

$\underline{\text { Method } 1}$	$\underline{\text { Method } 2}$
Mass of $\mathrm{H}_{2} \mathrm{O}=4.38-2.46$	Percentage of $\mathrm{H}_{2} \mathrm{O}=44 \%$
$(=1.92 \mathrm{~g})$	

If there is an $A E$ in $M 1$ then can score $M 2$ and $M 3$
If M_{r} incorrect can only score M1

ZnSO_{4}	$\mathrm{H}_{2} \mathrm{O}$	ZnSO4	H2O
$\underline{2.46}$	1.92	56	44
161.5	18	161.5	18
(0.0152	0.107)	(0.347	2.444)
(1	7)	(1	7)
$x=7$		$x=7$	

If $x=7$ with working then award 3 marks.
Allow alternative methods.
If M1 incorrect due to $A E$, M3 must be an integer.
(b) Moles $\mathrm{HCl}=\underline{0.12(0)}$
$\mathrm{mol} \mathrm{ZnCl} 2=0.06(0)$ OR $\underline{0.12 / 2}$
1

1
If M2 incorrect then CE and cannot score M2, M3 and M4.
mass $\mathrm{ZnCl}_{2}=0.06 \times 136.4$
Allow $65.4+(2 \times 35.5)$ for 136.4
1
$=\underline{8.18(4)}(\mathrm{g})$ OR $\underline{8.2}(\mathrm{~g})$
Must be to 2 significant figures or more.
Ignore units.
1
(c) Moles $\mathrm{ZnCl}_{2}=\frac{10.7}{136.4}(=0.0784)$

OR moles $\mathrm{Zn}=0.0784$
Mass Zn reacting $=0.0784 \times 65.4=(5.13 \mathrm{~g})$
M2 is for their M1 $\times 65.4$
\% purity of $\mathrm{Zn}=\frac{5.13}{5.68} \times 100$
M 3 is $\mathrm{M} 2 \times 100 / 5.68$ provided M 2 is <5.68
1
$=\underline{90.2 \%}$ OR $\underline{90.3 \%}$
Allow alternative methods.
M1 = Moles $\mathrm{ZnCl}_{2}=\underline{10.7}$ (=0.0784)
136.4

M2 $=$ Theoretical moles $Z n=\underline{5.68} \mathbf{6 5 . 4}(=0.0869)$
$M 3=M 1 \times 100 / M 2=(0.0784 \times 100 / 0.0869)$
$M 4=\underline{90.2 \%}$ OR $\underline{\underline{90.3 \%}}$
1
(d) Ionic

If not ionic $C E=0 / 3$
1
Strong (electrostatic) attraction (between ions)
between oppositely charged ions / + and - ions / F^{-}and Zn^{2+} ions
If IMF, molecules, metallic bonding implied $C E=0 / 3$
1

1
[14]
4. (a) (i) 0.0212

Need 3 sig figs

Allow correct answer to 3 sig figs eg 2.12×10^{-2}
1
(ii) 0.0106

Mark is for (a)(i) divided by 2 leading to correct answer 2 sig figs
(iii) $M_{r}=\underline{100.1}$
1.06 g

Allow 100.1 as 'string'
Need 3 sig figs or more
Consequential on (a)(ii) $\times 100(.1)$
(iv) Neutralisation or acid / base reaction

Allow acid / alkali reaction
Apply list principle
(b) (i) $\quad \mathrm{T}=304(\mathrm{~K})$ and $\mathrm{P}=100000$ (Pa)

Only T and P correctly converted

1

1
0.139 (mol)

Allow $0.138-0.139$
(ii) $0.0276-0.0278(\mathrm{~mol})$

Allow answer to (b)(i) divided by 5 leading to a correct answer Allow 0.028
(c) $4.20 \mathrm{~g} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \mathrm{H}_{2} \mathrm{O}$
$\frac{4.20}{164(.1)} \quad \frac{1.84}{18}$
Mark is for dividing by the correct Mr values
M2 and M3 dependent on correct M1
$0.0256 \quad 0.102$
M2 can be awarded here instead
1 : 3.98
$x=4$
If $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ seen with working then award 3 marks
Credit alternative method which gives $x=4$

