

A-Level Chemistry The Mole and Avogadro's Constant Mark Scheme

Time available: 52 minutes Marks available: 48 marks

Mark schemes

- 1.
- (a) **M1** $n(S_2O_3^{2-}) = 33.50 \times 0.100 \div 1000 = \underline{0.00335}$

1

M2 $n(I_2) = 0.00335 \div 2 = 0.001675 \text{ (from eqn 2)}$

$$M2 = M1 \div 2$$

1

M3 $n(CIO^{-})$ in 25 cm³ pipette = 0.001675 (from eqn 1)

$$M3 = M2$$

1

M4 $n(CIO^{-})$ in 100 cm³ flask = 0.001675 $\underline{x} \cdot \underline{4} = 0.00670 = n(NaCIO)$ in original 10 cm³ sample

$$M4 = M3 \times 4$$

1

M5 mass (NaClO) = $0.00670 \times 74.5 = 0.499 \text{ g}$

$$M5 = M4 \times 74.5$$

1

M6 mass (bleach) = $10.0 \times 1.20 = 12 \text{ g}$

1

M7 % by mass of NaClO = $\frac{0.499}{12}$ = 4.16 %

$$M7 = (M5 \div M6) \times 100 \text{ to 3 significant figures}$$

Allow 4.15% to 4.17%

1

1

(b) 0.45%

[8]

2. (a) Selects correct titres

1

mean titre = $\frac{9.75 + 9.65}{2}$

$$= 9.7(0) \text{ cm}^3$$

Calculates mean

1

1

mol HCL = $0.102 \times 9.70/1000 = 9.89 \times 10^{-4}$

Calculates mol (working or result gains credit)

 9.92×10^{-4} scores 1 if all 4 titres used

 9.83×10^{-4} scores 1 if titres 1,2, and 3 used

(b) mol MHCO₃ = ANS 3.1 × 10 (= 9.89×10^{-3})

Use ecf if wrong mean calculated above

1

$$Mr = \frac{1464/1000}{M1}$$

1

Mr = 148 (3sf)

Allow ecf following wrong mass conversion

1

(c) Suggestion: Use a larger mass of solid OR use a more concentrated solution of MHCO₃ OR less concentrated / more dilute solution of HCI OR more MHCO₃

1

Cannot score justification mark unless suggestion correct, but suggestion could be after justification

Justification: So a larger titre/reading will be needed OR larger volume of HCl

Assume reference to the solution means the MHCO₃

1

(d) This question is marked using levels of response.

Level 3

Must use volumetric flask to access level 3 Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 then stage 3.

6 marks

All stages are covered but up to 2 omissions/errors from different stages. If 2 omissions/errors from same stage only level 2 possible

All stages are covered and the description of each stage is complete

5 marks

Level 2

Answer is mainly coherent and shows progression from stage 1 to stage 3

All stages are covered but 3 omissions/errors

4 marks

All stages are attempted

3 marks

Level 1

Answer includes isolated statements but these are not presented in a logical order or show confused reasoning.

2 stages attempted

1 stage attempted

2 marks

1 mark

Level 0

Insufficient correct chemistry to gain a mark.

0 marks

Indicative Chemistry content

Stage 1: transfers known mass of solid

- a) Weigh the sample bottle containing the solid on a (2 dp) balance
- b) Transfer to beaker* and reweigh sample bottle
- c) Record the difference in mass

Or

- d) Place beaker* on balance and tare
- e) Transfer solid into beaker
- f) Record mass

Or

- g) Known mass provided
- h) Transfers (known) mass into beaker*
- i) Wash all remaining solid from sample bottle into beaker

Allow use of weighing boat

*Allow other suitable glassware including volumetric flask

Stage 2: Dissolves in water

- a) Add distilled / deionised water
- b) Stir (with a glass rod) or swirl
- c) Until all solid has dissolved

Stage 3: Transfer, washing and agitation

- a) Transfer to <u>volumetric / graduated</u> flask. Allow if a clear description/diagram given eg long necked flask with 250 cm³ mark
- b) With washings
- c) Make up to 250 cm3 / mark with water
- d) Shakes/inverts/mixes

6

[14]

3.

(a)

Method 1 Method 2

Mass of $H_2O = 4.38-2.46$

Percentage of $H_2O = 44\%$

1

1

1

1

1

1

1

1

1

(= 1.92 g)

If there is an AE in M1 then can score M2 and M3

If M_r incorrect can only score M1

 $ZnSO_4$ H_2O 2.46 1.92 161.5 18

ZnSO4 H2O <u>56</u> <u>44</u> 161.5 18

(0.347 2.444) (1 : 7)

x = 7 x = 7

If x = 7 with working then award 3 marks.

Allow alternative methods.

If M1 incorrect due to AE, M3 must be an integer.

(b) Moles HCI = 0.12(0)

 $mol\ ZnCl_2 = 0.06(0)\ OR\ 0.12/2$

If M2 incorrect then CE and cannot score M2, M3 and M4.

mass $ZnCl_2 = 0.06 \times 136.4$

Allow $65.4 + (2 \times 35.5)$ for 136.4

= 8.18(4) (g) **OR** 8.2 (g)

Must be to 2 significant figures or more.

Ignore units.

(c) Moles $ZnCl_2 = \frac{10.7}{136.4}$ (= 0.0784)

OR moles Zn = 0.0784

Mass Zn reacting = $0.0784 \times 65.4 = (5.13 \text{ g})$

M2 is for their M1 \times 65.4

```
% purity of Zn = \frac{5.13}{5.68} \times 100
      M3 is M2 \times 100 / 5.68 provided M2 is < 5.68
      = 90.2\% OR 90.3\%
                   Allow alternative methods.
                   M1 = Moles ZnCl_2 = 10.7 (= 0.0784)
                                           136.4
                   M2 = Theoretical \ moles \ Zn = \underline{5.68} \ (= 0.0869)
                   M3 = M1 \times 100 / M2 = (0.0784 \times 100 / 0.0869)
                   M4 = 90.2\% OR 90.3%
                                                                                                      1
(d)
      Ionic
                   If not ionic CE = 0/3
                                                                                                      1
      Strong (electrostatic) attraction (between ions)
                                                                                                      1
      between oppositely charged ions / + and - ions / F<sup>-</sup> and Zn<sup>2+</sup> ions
                   If IMF, molecules, metallic bonding implied CE = 0/3
                                                                                                      1
                                                                                                                [14]
(a)
      (i)
            0.0212
                   Need 3 sig figs
                   Allow correct answer to 3 sig figs eg 2.12 x 10<sup>-2</sup>
                                                                                                      1
            0.0106
      (ii)
                   Mark is for (a)(i) divided by 2 leading to correct answer 2 sig figs
                                                                                                      1
      (iii)
             M_r = 100.1
             1.06 g
                   Allow 100.1 as 'string'
                   Need 3 sig figs or more
                   Consequential on (a)(ii) x 100(.1)
                                                                                                      2
      (iv)
            Neutralisation or acid / base reaction
                   Allow acid / alkali reaction
                   Apply list principle
                                                                                                      1
```

T = 304(K) and P = 100 000 (Pa)(b) Only T and P correctly converted 1 $\frac{100\ 000 \times 3.50 \times 10^{-3}}{8.31 \times 304} ORn = \frac{PV}{RT}$ 1 0.139 (mol) Allow <u>0.138 - 0.139</u> 1 (ii) 0.0276 - 0.0278 (mol)Allow answer to (b)(i) divided by 5 leading to a correct answer Allow 0.028 1 (c) $4.20 \text{ g Ca}(NO_3)_2$ 1 Ca(NO₃)₂ H₂O Mark is for dividing by the correct Mr values M2 and M3 dependent on correct M1 0.0256 0.102 M2 can be awarded here instead 3.98 1 x = 4If $Ca(NO_3)_2.4H_2O$ seen with working then award 3 marks Credit alternative method which gives x = 41 [12]