

A-Level Chemistry The Mole and Avogadro's Constant Question Paper

Time available: 52 minutes Marks available: 48 marks

www.accesstuition.com

1.

A student does an experiment to determine the percentage by mass of sodium chlorate(I), NaClO, in a sample of bleach solution.

Method:

- Dilute a 10.0 cm³ sample of bleach solution to 100 cm³ with distilled water.
- Transfer 25.0 cm³ of the diluted bleach solution to a conical flask and acidify using sulfuric acid.
- Add excess potassium iodide to the conical flask to form a brown solution containing I₂(aq).
- Add 0.100 mol dm⁻³ sodium thiosulfate solution (Na₂S₂O₃) to the conical flask from a burette until the brown solution containing I₂(aq) becomes a colourless solution containing I⁻(aq).

The student uses 33.50 cm³ of sodium thiosulfate solution.

The density of the original bleach solution is 1.20 g cm⁻³

The equations for the reactions in this experiment are

CIO⁻(aq) + 2 H⁺(aq) + 2 I⁻(aq)
$$\rightarrow$$
 CI⁻(aq) + H₂O(I) + I₂(aq)
2 S₂O₃²⁻(aq) + I₂(aq) \rightarrow 2 I⁻(aq) + S₄O₆²⁻(aq)

(a) Use all the information given to calculate the percentage by mass of NaClO in the original bleach solution.

Give your answer to 3 significant figures.

Percentage by mass _	
----------------------	--

(7)

(b) The total uncertainty from two readings and an end point error in using a burette is $\pm 0.15 \text{ cm}^3$

What is the total percentage uncertainty in using the burette in this experiment?

Tick (\checkmark) one box.

0.45%	1,0
-------	-----

(1)

(Total 8 marks)

2. This question is about a white solid, MHCO₃, that dissolves in water and reacts with hydrochloric acid to give a salt.

$$MHCO_3 + HCI \longrightarrow MCI + H_2O + CO_2$$

A student was asked to design an experiment to determine a value for the M_r of MHCO₃. The student dissolved 1464 mg of MHCO₃ in water and made the solution up to 250 cm³. 25.0 cm³ samples of the solution were titrated with 0.102 mol dm⁻³ hydrochloric acid. The results are shown in the table.

	Rough	1	2	3
Initial burette reading / cm ³	0.00	10.00	19.50	29.25
Final burette reading / cm ³	10.00	19.50	29.25	38.90
Titre / cm ³	10.00	9.50	9.75	9.65

(a) Calculate the mean titre and use this to determine the amount, in moles, of HCl that reacted with 25.0 cm³ of the MHCO₃ solution.

The student in experiment.	dentified use of the burette as the largest source of uncertainty in the
-	ne apparatus, suggest how the procedure could be improved to reduce the ncertainty in using the burette.
lustify your s	uggested improvement.
Suggestion _	

Describe the method, including apparatus and practical details, that the student should use to prepare the solution. (6) (Total 14 marks)	(d)	Another student is required to make up 250 cm ³ of an aqueous solution that contain known mass of MHCO ₃ . The student is provided with a sample bottle containing the MHCO ₃ .	
• •			uld use
• •			-
• •			-
• •			-
• •			-
• •			_
• •			_
			• •

People who have a zinc deficiency can take hydrated zinc sulfate ($ZnSO_4.xH_2O$) as a dietary supplement.
A student heated 4.38 g of hydrated zinc sulfate and obtained 2.46 g of anhydrous zinc sulfate.
Use these data to calculate the value of the integer x in $ZnSO_4.xH_2O$ Show your working.
Zinc chloride can be prepared in the laboratory by the reaction between zinc oxide and hydrochloric acid. The equation for the reaction is
$ZnO + 2HCI \longrightarrow ZnCl_2 + H_2O$
$ZnO + 2HCI \longrightarrow ZnCI_2 + H_2O$ A 0.0830 mol sample of pure zinc oxide was added to 100 cm ³ of 1.20 mol dm ⁻³ hydrochloric acid.
A 0.0830 mol sample of pure zinc oxide was added to 100 cm ³ of 1.20 mol dm ⁻³
A 0.0830 mol sample of pure zinc oxide was added to 100 cm ³ of 1.20 mol dm ⁻³ hydrochloric acid. Calculate the maximum mass of anhydrous zinc chloride that could be obtained from th
A 0.0830 mol sample of pure zinc oxide was added to 100 cm ³ of 1.20 mol dm ⁻³ hydrochloric acid. Calculate the maximum mass of anhydrous zinc chloride that could be obtained from th
A 0.0830 mol sample of pure zinc oxide was added to 100 cm ³ of 1.20 mol dm ⁻³ hydrochloric acid. Calculate the maximum mass of anhydrous zinc chloride that could be obtained from th
A 0.0830 mol sample of pure zinc oxide was added to 100 cm ³ of 1.20 mol dm ⁻³ hydrochloric acid. Calculate the maximum mass of anhydrous zinc chloride that could be obtained from th
A 0.0830 mol sample of pure zinc oxide was added to 100 cm ³ of 1.20 mol dm ⁻³ hydrochloric acid. Calculate the maximum mass of anhydrous zinc chloride that could be obtained from th

3.

$Zn + 2HCl \longrightarrow ZnCl_2 + H_2$	
An impure sample of zinc powder with a mass of 5.68 g was reacted with hydrogold chloride gas until the reaction was complete. The zinc chloride produced had a reaction g.	
Calculate the percentage purity of the zinc metal. Give your answer to 3 significant figures.	
Predict the type of crystal structure in solid zinc fluoride and explain why its melt high.	
Predict the type of crystal structure in solid zinc fluoride and explain why its melt	-
Predict the type of crystal structure in solid zinc fluoride and explain why its melt	
Predict the type of crystal structure in solid zinc fluoride and explain why its melt	-
Predict the type of crystal structure in solid zinc fluoride and explain why its melt	ing point is

Zinc chloride can also be prepared in the laboratory by the reaction between zinc and

(c)

(d)

1.	•	gessal NO ₃) ₂	tpeter was the first nitrogen fertiliser to be manufactured in Norway. It has the formula	
	(a)	•	gessaltpeter can be made by the reaction of calcium carbonate with dilute nitric acid as wn by the following equation.	
		C	$CaCO_3(s) + 2HNO_3(aq) \longrightarrow Ca(NO_3)_2(aq) + CO_2(g) + H_2O(l)$	
			n experiment, an excess of powdered calcium carbonate was added to $36.2~{\rm cm^3}{\rm of}$ $16~{\rm mol}$ dm $^{-3}$ nitric acid.	
		(i)	Calculate the amount, in moles, of HNO ₃ in 36.2 cm ³ of 0.586 mol dm ⁻³ nitric acid. Give your answer to 3 significant figures.	
				(1
		(ii)	Calculate the amount, in moles, of CaCO ₃ that reacted with the nitric acid. Give your answer to 3 significant figures.	
				(1
		(iii)	Calculate the minimum mass of powdered CaCO ₃ that should be added to react with all of the nitric acid.	
			Give your answer to 3 significant figures.	
				(2
		(iv)	State the type of reaction that occurs when calcium carbonate reacts with nitric acid.	

(1)

	mple of Norgessaltpeter was decomposed completely.
	gases produced occupied a volume of $3.50 \times 10^{-3} \mathrm{m}^3$ at a pressure of 100 kPa and a perature of 31 °C.
	gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$)
(i)	Calculate the total amount, in moles, of gases produced.
(ii)	Hence calculate the amount, in moles, of oxygen produced.
Hyd integ	rated calcium nitrate can be represented by the formula $Ca(NO_3)_2.xH_2O$ where x is anger.
A 6.	04 g sample of $Ca(NO_3)_2.xH_2O$ contains 1.84 g of water of crystallisation.
	this information to calculate a value for x . w your working.
Sho	
Sho	
Sho	

Norgessaltpeter decomposes on heating as shown by the following equation.

(b)